This study compares a staged thermal processing of the sewage sludge, with single step, integrated thermal processing. The aim of this study is to find the optimal conditions for drying and subsequently for carbonization/torrefaction of sewage sludge, regarding the energy consumption. This study presents the results of the drying tests performed at laboratory scale convective dryer for different parameters of drying agent (air). The tests were focused on finding and developing a method of drying that allows to minimize the energy consumption. Subsequently, both dry and vapothermal torrefaction was performed in the presence of oxygen. The kinetics of drying, using low quality heat as well as the properties of products and by-products of torrefaction in both regimes were determined. The process was characterized by mass yield and energy yield in both of the cases. There has been only scarce amount of literature studies published on the torrefaction of sewage sludge so far, without a detailed study of the composition of the torgas and tars of such origin. Performed study enables a comparison of two distinct scenarios of the processing, i.e., drying followed by dry torrefaction with a single stage of vapothermal torrefaction.

References

References
1.
Kacprzak
,
M.
,
Neczaj
,
E.
,
Fijałkowski
,
K.
,
Grobelak
,
A.
,
Grosser
,
A.
,
Worwag
,
M.
,
Rorat
,
A.
,
Brattebo
,
H.
,
Almås
,
Å.
, and
Singh
,
B. R.
,
2017
, “
Sewage Sludge Disposal Strategies for Sustainable Development
,”
Environ. Res.
,
156
, pp.
39
46
.
2.
Lee
,
L. H.
,
Wu
,
T. Y.
,
Shak
,
K. P. Y.
,
Lim
,
S. L.
,
Ng
,
K. Y.
,
Nguyen
,
M. N.
, and
Teoh
,
W. H.
,
2018
, “
Sustainable Approach to Biotransform Industrial Sludge Into Organic Fertilizer Via Vermicomposting: A Mini-Review
,”
J. Chem. Technol. Biotechnol.
,
93
(
4
), pp.
925
935
.
3.
Cieślik
,
B. M.
,
Namieśnik
,
J.
, and
Konieczka
,
P.
,
2015
, “
Review of Sewage Sludge Management: Standards, Regulations and Analytical Methods
,”
J. Cleaner Prod.
,
90
, pp.
1
15
.
4.
Andersen
,
A.
,
2002
, “
Disposal and Recycling Routes for Sewage Sludge—Part 4: Economic Report
,” Office for Official Publications of the European Communities, Luxembourg,
Report
http://ec.europa.eu/environment/archives/waste/sludge/pdf/sludge_disposal4.pdf.
5.
Andersen
,
A.
,
2001
, “
Disposal and Recycling Routes for Sewage Sludge—Part 1: Sludge Use Acceptance
,” Office for Official Publications of the European Communities, Luxembourg,
Report
http://ec.europa.eu/environment/archives/waste/sludge/pdf/sludge_disposal1.pdf.
6.
Gulyurtlu
,
I.
,
Lopes
,
M. H.
,
Abelha
,
P.
,
Cabrita
,
I.
, and
Oliveira
,
J. F. S.
,
2006
, “
The Study of Partitioning of Heavy Metals During Fluidized Bed Combustion of Sewage Sludge and Coal
,”
ASME J. Energy Resour. Technol.
,
128
(
2
), pp.
104
110
.
7.
Werle
,
S.
, and
Wilk
,
R. K.
,
2010
, “
A Review of Methods for the Thermal Utilization of Sewage Sludge: The Polish Perspective
,”
Renewable Energy
,
35
(
9
), pp.
1914
1919
.
8.
Chen
,
G.
,
Yue
,
P. L.
, and
Mujumdar
,
A. S.
,
2002
, “
Sludge Dewatering and Drying
,”
Drying Technol.
,
20
(
4–5
), pp.
883
916
.
9.
Tunçal
,
T.
, and
Uslu
,
O.
,
2014
, “
A Review of Dehydration of Various Industrial Sludges
,”
Drying Technol.
,
32
(
14
), pp.
1642
1654
.
10.
Peeters
,
B.
,
2010
, “
Mechanical Dewatering and Thermal Drying of Sludge in a Single Apparatus
,”
Drying Technol.
,
28
(
4
), pp.
454
459
.
11.
Bennamoun
,
L.
,
Arlabosse
,
P.
, and
Léonard
,
A.
,
2013
, “
Review on Fundamental Aspect of Application of Drying Process to Wastewater Sludge
,”
Renewable Sustainable Energy Rev.
,
28
, pp.
29
43
.
12.
Deng
,
W.
,
Su
,
Y.
, and
Yu
,
W.
,
2013
, “
Theoretical Calculation of Heat Transfer Coefficient When Sludge Drying in a Nara-Type Paddle Dryer Using Different Heat Carriers
,”
Procedia Environ. Sci.
,
18
, pp.
709
715
.
13.
Ferrasse
,
J. H.
,
Arlabosse
,
P.
, and
Lecomte
,
D.
,
2002
, “
Heat, Momentum, and Mass Transfer Measurements in Indirect Agitated Sludge Dryer
,”
Drying Technol.
,
20
(
4–5
), pp.
749
769
.
14.
Arlabosse
,
P.
,
Chavez
,
S.
, and
Lecomte
,
D.
,
2004
, “
Method for Thermal Design of Paddle Dryers: Application to Municipal Sewage Sludge
,”
Drying Technol.
,
22
(
10
), pp.
2375
2393
.
15.
Moscicki
,
K. J.
,
Niedzwiecki
,
L.
,
Owczarek
,
P.
, and
Wnukowski
,
M.
,
2014
, “
Commoditization of Biomass: Dry Torrefaction and Pelletization—A Review
,”
J. Power Technol.
,
94
(
4
), pp.
233
249
.http://papers.itc.pw.edu.pl/index.php/JPT/article/view/562
16.
Rokni
,
E.
,
Liu
,
Y.
,
Ren
,
X.
, and
Levendis
,
Y.
,
2019
, “
Nitrogen-Bearing Emissions From Burning Corn Straw in a Fixed-Bed Reactor: Effects of Fuel Moisture, Torrefaction and Air Flowrate
,”
ASME J. Energy Resour. Technol.
,
141
(8), p. 082202.http://energyresources.asmedigitalcollection.asme.org/article.aspx?articleid=2722928
17.
Pawlak-Kruczek
,
H.
,
Krochmalny
,
K.
,
Mościcki
,
K.
,
Zgóra
,
J.
,
Czerep
,
M.
,
Ostrycharczyk
,
M.
, and
Niedźwiecki
,
Ł.
,
2017
, “
Torrefaction of Various Types of Biomass in Laboratory Scale, Batch-Wise Isothermal Rotary Reactor and Pilot Scale, Continuous Multi-Stage Tape Reactor
,”
Eng. Prot. Environ.
,
20
(
4
), pp.
457
472
.
18.
Yin
,
Y.
,
Yin
,
J.
,
Zhang
,
W.
,
Tian
,
H.
,
Hu
,
Z.
,
Ruan
,
M.
,
Song
,
Z.
, and
Liu
,
L.
,
2018
, “
Effect of Char Structure Evolution During Pyrolysis on Combustion Characteristics and Kinetics of Waste Biomass
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072203
.
19.
Magdziarz
,
A.
, and
Werle
,
S.
,
2014
, “
Analysis of the Combustion and Pyrolysis of Dried Sewage Sludge by TGA and MS
,”
Waste Manage.
,
34
(
1
), pp.
174
179
.
20.
Wilk
,
M.
,
Magdziarz
,
A.
,
Jayaraman
,
K.
,
Szymańska-Chargot
,
M.
, and
Gokalp
,
I.
,
2019
, “
Biomass and Bioenergy Hydrothermal Carbonization Characteristics of Sewage Sludge and Lignocellulosic Biomass. A Comparative Study
,”
Biomass Bioenergy
,
120
, pp.
166
175
.
21.
Nyakuma
,
B. B.
,
Magdziarz
,
A.
, and
Werle
,
S.
,
2016
, “
Physicochemical, Thermal and Kinetic Analysis of Sewage Sludge
,”
Proc. ECOpole
,
10
(
2
), pp.
473
480
.http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-b99109e3-94d5-459e-b754-6ef9dfe97731
22.
Magdziarz
,
A.
,
Wilk
,
M.
, and
Kosturkiewicz
,
B.
,
2011
, “
Investigation of Sewage Sludge Preparation for Combustion Process
,”
Chem. Process Eng.
,
32
(
4
), pp.
299
309
.http://journals.pan.pl/dlibra/publication/98193/edition/84630/content
23.
Dhungana
,
A.
,
Basu
,
P.
, and
Dutta
,
A.
,
2012
, “
Effects of Reactor Design on the Torrefaction of Biomass
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041801
.
24.
Howell
,
A.
,
Beagle
,
E.
, and
Belmont
,
E.
,
2017
, “
Torrefaction of Healthy and Beetle Kill Pine and Co-Combustion With Sub-Bituminous Coal
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
042002
.
25.
Chew
,
J. J.
, and
Doshi
,
V.
,
2011
, “
Recent Advances in Biomass Pretreatment—Torrefaction Fundamentals and Technology
,”
Renewable Sustainable Energy Rev.
,
15
(
8
), pp.
4212
4222
.
26.
Pulka
,
J.
,
Wiśniewski
,
D.
,
Gołaszewski
,
J.
, and
Białowiec
,
A.
,
2016
, “
Is the Biochar Produced From Sewage Sludge a Good Quality Solid Fuel?
,”
Arch. Environ. Prot.
,
42
(
4
), pp.
125
134
.
27.
Poudel
,
J.
,
Ohm
,
T. I.
,
Lee
,
S. H.
, and
Oh
,
S. C.
,
2015
, “
A Study on Torrefaction of Sewage Sludge to Enhance Solid Fuel Qualities
,”
Waste Manage.
,
40
, pp.
112
118
.
28.
Poudel
,
J.
,
Karki
,
S.
,
Gu
,
J. H.
,
Lim
,
Y.
, and
Oh
,
S. C.
,
2017
, “
Effect of Co-Torrefaction on the Properties of Sewage Sludge and Waste Wood to Enhance Solid Fuel Qualities
,”
J. Residuals Sci. Technol.
,
14
(
3
), pp.
23
36
.
29.
Atienza-Martínez
,
M.
,
Fonts
,
I.
,
Ábrego
,
J.
,
Ceamanos
,
J.
, and
Gea
,
G.
,
2013
, “
Sewage Sludge Torrefaction in a Fluidized Bed Reactor
,”
Chem. Eng. J.
,
222
, pp.
534
545
.
30.
Atienza-Martínez
,
M.
,
Mastral
,
J. F.
,
Ábrego
,
J.
,
Ceamanos
,
J.
, and
Gea
,
G.
,
2015
, “
Sewage Sludge Torrefaction in an Auger Reactor
,”
Energy Fuels
,
29
(
1
), pp.
160
170
.
31.
Huang
,
M.
,
Chang
,
C. C.
,
Yuan
,
M. H.
,
Chang
,
C. Y.
,
Wu
,
C. H.
,
Shie
,
J. L.
,
Chen
,
Y. H.
,
Chen
,
Y. H.
,
Ho
,
C.
,
Chang
,
W. R.
,
Yang
,
T. Y.
, and
Lin
,
F. C.
,
2017
, “
Production of Torrefied Solid Bio-Fuel From Pulp Industry Waste
,”
Energies
,
10
(
7
), p.
910
.
32.
Huang
,
Y.-F.
,
Sung
,
H.-T.
,
Chiueh
,
P.-T.
, and
Lo
,
S.-L.
,
2017
, “
Microwave Torrefaction of Sewage Sludge and Leucaena
,”
J. Taiwan Inst. Chem. Eng.
,
70
, pp.
236
243
.
33.
Huang
,
Y.-F.
,
Sung
,
H.-T.
,
Chiueh
,
P.-T.
, and
Lo
,
S.-L.
,
2016
, “
Co-Torrefaction of Sewage Sludge and Leucaena by Using Microwave Heating
,”
Energy
,
116
, pp.
1
7
.
34.
Pawlak-Kruczek
,
H.
,
Krochmalny
,
K. K.
,
Wnukowski
,
M.
, and
Niedzwiecki
,
L.
,
2018
, “
Slow Pyrolysis of the Sewage Sludge With Additives: Calcium Oxide and Lignite
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062206
.
35.
Akinyemi
,
O. S.
,
Jiang
,
L.
,
Buchireddy
,
P. R.
,
Barskov
,
S. O.
,
Guillory
,
J. L.
, and
Holmes
,
W.
,
2018
, “
Investigation of Effect of Biomass Torrefaction Temperature on Volatile Energy Recovery Through Combustion
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112003
.
36.
Tic
,
W.
,
Guziałowska-Tic
,
J.
,
Pawlak-Kruczek
,
H.
,
Woźnikowski
,
E.
,
Zadorożny
,
A.
,
Niedźwiecki
,
Ł.
,
Wnukowski
,
M.
,
Krochmalny
,
K.
,
Czerep
,
M.
,
Ostrycharczyk
,
M.
,
Baranowski
,
M.
,
Zgóra
,
J.
, and
Kowal
,
M.
,
2018
, “
Novel Concept of an Installation for Sustainable Thermal Utilization of Sewage Sludge
,”
Energies
,
11
(
4
), p.
748
.
37.
Pawlak-Kruczek
,
H.
,
Wnukowski
,
M.
,
Niedzwiecki
,
L.
,
Czerep
,
M.
,
Kowal
,
M.
,
Krochmalny
,
K.
,
Zgora
,
J.
,
Ostrycharczyk
,
M.
,
Baranowski
,
M.
,
Tic
,
W. J.
, and
Guzialowska-Tic
,
J.
,
2019
, “
Torrefaction as a Valorization Method Used Prior to the Gasification of Sewage Sludge
,”
Energies
,
12
(
1
), p.
175
.
38.
Huang
,
Y. W.
,
Chen
,
M. Q.
, and
Luo
,
H. F.
,
2016
, “
Nonisothermal Torrefaction Kinetics of Sewage Sludge Using the Simplified Distributed Activation Energy Model
,”
Chem. Eng. J.
,
298
, pp.
154
161
.
39.
Do
,
T. X.
,
Lim
,
Y.
,
Cho
,
H.
,
Shim
,
J.
,
Yoo
,
J.
,
Rho
,
K.
,
Choi
,
S.-G.
, and
Park
,
B.-Y.
,
2017
, “
Process Modeling and Energy Consumption of Fry-Drying and Torrefaction of Organic Solid Waste
,”
Drying Technol.
,
35
(
6
), pp.
754
765
.
40.
Lasek
,
J. A.
,
Kopczyński
,
M.
,
Janusz
,
M.
,
Iluk
,
A.
, and
Zuwała
,
J.
,
2017
, “
Combustion Properties of Torrefied Biomass Obtained From Flue Gas-Enhanced Reactor
,”
Energy
,
119
, pp.
362
368
.
41.
Joshi
,
Y.
,
Di Marcello
,
M.
,
Krishnamurthy
,
E.
, and
De Jong
,
W.
,
2015
, “
Packed-Bed Torrefaction of Bagasse Under Inert and Oxygenated Atmospheres
,”
Energy Fuels
,
29
(
8
), pp.
5078
5087
.
42.
Uemura
,
Y.
,
Saadon
,
S.
,
Osman
,
N.
,
Mansor
,
N.
, and
Tanoue
,
K. I.
,
2015
, “
Torrefaction of Oil Palm Kernel Shell in the Presence of Oxygen and Carbon Dioxide
,”
Fuel
,
144
, pp.
171
179
.
43.
Uemura
,
Y.
,
Omar
,
W.
,
Othman
,
N. A.
,
Yusup
,
S.
, and
Tsutsui
,
T.
,
2013
, “
Torrefaction of Oil Palm EFB in the Presence of Oxygen
,”
Fuel
,
103
, pp.
156
160
.
44.
Chen
,
W. H.
,
Zhuang
,
Y. Q.
,
Liu
,
S. H.
,
Juang
,
T. T.
, and
Tsai
,
C. M.
,
2016
, “
Product Characteristics From the Torrefaction of Oil Palm Fiber Pellets in Inert and Oxidative Atmospheres
,”
Bioresour. Technol.
,
199
, pp.
367
374
.
45.
Chen
,
W. H.
,
Lu
,
K. M.
,
Liu
,
S. H.
,
Tsai
,
C. M.
,
Lee
,
W. J.
, and
Lin
,
T. C.
,
2013
, “
Biomass Torrefaction Characteristics in Inert and Oxidative Atmospheres at Various Superficial Velocities
,”
Bioresour. Technol.
,
146
, pp.
152
160
.
46.
Lu
,
K. M.
,
Lee
,
W. J.
,
Chen
,
W. H.
,
Liu
,
S. H.
, and
Lin
,
T. C.
,
2012
, “
Torrefaction and Low Temperature Carbonization of Oil Palm Fiber and Eucalyptus in Nitrogen and Air Atmospheres
,”
Bioresour. Technol.
,
123
, pp.
98
105
.
47.
Funke
,
A.
,
Reebs
,
F.
, and
Kruse
,
A.
,
2013
, “
Experimental Comparison of Hydrothermal and Vapothermal Carbonization
,”
Fuel Process. Technol.
,
115
, pp.
261
269
.
48.
CEN (European Committee for Standardization)
,
2015
, “
Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 1: Total Moisture—Reference Method
,” European Committee for Standardization, Brussels, Belgium, Standard No. EN ISO 18134-1:2015.
49.
CEN (European Committee for Standardization)
,
2009
, “
Solid Biofuels—Determination of the Content of Volatile Matter
,” European Committee for Standardization, Brussels, Belgium, Standard No. EN 15148:2009.
50.
CEN (European Committee for Standardization)
,
2015
, “
Solid Biofuels—Determination of Ash Content
,” European Committee for Standardization, Brussels, Belgium, Standard No. EN ISO 18122:2015.
51.
CEN (European Committee for Standardization)
,
2009
, “
Solid Biofuels—Determination of Calorific Value
,” European Committee for Standardization, Brussels, Belgium, Standard No. EN 14918.
52.
Bergman
,
P. C. A.
,
Boersma
,
A. R.
,
Kiel
,
J. H. A.
,
Prins
,
M. J.
,
Ptasinski
,
K. J.
, and
Janssen
,
F. J. J.
,
2004
, “
Torrefaction for Entrained-Flow Gasification of Biomass
,”
Second World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection
,
Rome, Italy
,
May 10–14
, Paper No.
ECN-C--05-067
https://www.ecn.nl/docs/library/report/2005/c05067.pdf.
You do not currently have access to this content.