The international trend of using renewable energy sources for generating electricity is increasing, partly through harvesting energy from wind turbines. Increasing electric power transmission efficiency is achievable through using real-time weather data for power line rating, known as real-time thermal rating (RTTR), instead of using the worst case scenario weather data, known as static rating. RTTR is particularly important for wind turbine connections to the grid, as wind power output and overhead conductor rating both increase with increasing wind speed, which should significantly increase real-time rated conductor from that of statically rated. Part of the real-time weather data is the effect of free-stream turbulence, which is not considered by the commonly used overhead conductor codes, Institute of Electrical and Electronics Engineers (IEEE) 738 and International Council on Large Electric Systems (CIGRÉ) 207. This study aims to assess the effect free-stream turbulence on IEEE 738 and CIGRÉ 207 forced cooling term. The study uses large eddy simulation (LES) in the ANSYS fluent software. The analysis is done for low wind speed, corresponding to Reynolds number of 3000. The primary goal is to calculate Nusselt number for cylindrical conductors with free-stream turbulence. Calculations showed an increase in convective heat transfer from the low turbulence value by ∼30% at turbulence intensity of 21% and length scale to diameter ratio of 0.4; an increase of ∼19% at turbulence intensity of 8% and length scale to diameter ratio of 0.4; and an increase of ∼15% at turbulence intensity of 6% and length scale to diameter ratio of 0.6.

References

References
1.
Simla
,
T.
,
Stanek
,
W.
, and
Czarnowska
,
L.
,
2018
, “
Thermo-Ecological Cost of Electricity Generated in Wind Turbine Systems
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
031201
.
2.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
050801
.
3.
Mishra
,
N.
,
Gupta
,
A. S.
,
Kumar
,
J. D. A.
, and
Mitra
,
S.
,
2018
, “
Numerical and Experimental Study on Performance Enhancement of Darrieus Vertical Axis Wind Turbine With Wingtip Devices
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
121201
.
4.
Yazici
,
I.
, and
Yaylaci
,
E.
,
2017
, “
Improving Efficiency of the Tip Speed Ratio-MPPT Method for Wind Energy Systems by Using an Integral Sliding Mode Voltage Regulator
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051203
.
5.
Fawzy
,
D.
,
Moussa
,
S.
, and
Badr
,
N.
,
2017
, “
Trio-V Wind Analyzer: A Generic Integral System for Wind Farm Suitability Design and Power Prediction Using Big Data Analytics
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051202
.
6.
Houssainy
,
S.
,
Janbozorgi
,
M.
, and
Kavehpour
,
P.
,
2018
, “
Theoretical Performance Limits of an Isobaric Hybrid Compressed Air Energy Storage System
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
101201
.
7.
Greenwood
,
D. M.
,
2014
, “
Quantifying the Benefits and Risks of Real-Time Thermal Ratings in Electrical Networks
,” Doctoral dissertation, Newcastle University, Newcastle upon Tyne, UK.
8.
McLaughlin
,
A.
,
Alshamali
,
M.
,
Colandairaj
,
J.
, and
Connor
,
S.
,
2011
, “
Application of Dynamic Line Rating to Defer Transmission Network Reinforcement Due to Wind Generation
,”
46th International Universities' Power Engineering Conference (UPEC),
Soest, Germany, Sept. 5–8.
9.
IEEE
,
2013
, “
IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors
,” IEEE, New York, IEEE Standard No. 738-2012, pp.
1
72
.
10.
CIGRÉ 207, Working Group 22.12
,
2002
, “
Thermal Behaviour of Overhead Conductors
,” International Council on Large Electric Systems (CIGRÉ), Paris, France.
11.
Sam
,
A. A.
,
Szasz
,
R.
, and
Revstedt
,
J.
,
2017
, “
An Investigation of Wind Farm Power Production for Various Atmospheric Boundary Layer Heights
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051216
.
12.
Comings
,
E. W.
,
Clapp
,
J. T.
, and
Taylor
,
J. F.
,
1948
, “
Air Turbulence and Transfer Processes
,”
Ind. Eng. Chem.
,
40
(
6
), pp.
1076
1082
.
13.
Maisel
,
D. S.
, and
Sherwood
,
T. K.
,
1950
, “
Effect of Air Turbulence on Rate of Evaporation of Water
,”
Chem. Eng. Prog.
,
46
(4), pp.
172
175
.
14.
Endoh
,
K.
,
Tsuruga
,
H.
,
Hirano
,
H.
, and
Morihira
,
M.
,
1972
, “
Effect of Turbulence on Heat and Mass Transfer
,”
Heat Transfer Jpn. Res.
,
1
(1), pp.
113
115
.
15.
Petrie
,
A.
, and
Simpson
,
H.
,
1972
, “
An Experimental Study of the Sensitivity to Freestream Turbulence of Heat Transfer in Wakes of Cylinders in Crossflow
,”
Int. J. Heat Mass Transfer
,
15
(
8
), pp.
1497
1513
.
16.
Kondjoyan
,
A.
, and
Daudin
,
J.
,
1995
, “
Effects of Free Stream Turbulence Intensity on Heat and Mass Transfers at the Surface of a Circular Cylinder and an Elliptical Cylinder, Axis Ratio 4
,”
Int. J. Heat Mass Transfer
,
38
(
10
), pp.
1735
1749
.
17.
Sak
,
C.
,
2002
, “
The Effect of Turbulence on Forced Convection From a Heated Horizontal Circular Cylinder
,” M.A.Sc. dissertation, University of Windsor, Windsor, ON, Canada.
18.
Van Der Hegge Zijnen
,
B. G.
,
1958
, “
Heat Transfer From Horizontal Cylinders to a Turbulent Air Flow
,”
Appl. Sci. Res., Sect. A
,
7
(
2–3
), pp.
205
223
.
19.
Žukauskas
,
A.
, and
Žiugžda
,
J.
,
1985
,
Heat Transfer of Cylinders in Crossflow
,
Hemisphere Publishing Corporation
,
Washington, DC
.
20.
Yardi
,
N. R.
, and
Sukhatme
,
S. P.
,
1978
, “
Effects of Turbulence Intensity and Integral Length Scale of a Turbulent Free Stream on Forced Convection Heat Transfer
,”
International Heat Transfer Conference,
Toronto, ON, Canada, Aug. 7–11, pp.
347
352
.
21.
Kestin
,
J.
, and
Wood
,
R. T.
,
1971
, “
The Influence of Turbulence on Mass Transfer From Cylinders
,”
ASME J. Heat Transfer
,
93
(
4
), pp.
321
326
.
22.
Smith
,
M. C.
, and
Kuethe
,
A. M.
,
1966
, “
Effects of Turbulence on Laminar Skin Friction and Heat Transfer
,”
Phys. Fluids
,
9
(
12
), pp.
2337
2344
.
23.
Boulos
,
M. I.
, and
Pei
,
D. C. T.
,
1973
, “
Heat and Mass Transfer From Cylinders to a Turbulent Fluid Stream a Critical Review
,”
Can. J. Chem. Eng.
,
51
(
6
), pp.
673
679
.
24.
Midal Cables
, 2010, “
ACSR Conductor Data Sheet
,” Midal Cables, Ltd., Kingdom of Bahrain, accessed July 19, 2017, https://www.midalcable.com/overhead-line-conductors/acsr-aluminium-conductor-steel-reinforced
25.
Morgan
,
V. T.
,
1975
, “
The Overall Convective Heat Transfer From Smooth Circular Cylinders
,”
Adv. Heat Transfer
,
11
, pp.
199
264
.
26.
Launder
,
B. E.
, and
Sandham
,
N. D.
, eds.,
2002
,
Closure Strategies for Turbulent and Transitional Flows
,
Cambridge University Press
, Cambridge, UK.
27.
Piomelli
,
U.
,
2001
, “
Large-Eddy and Direct Simulation of Turbulent Flows
,”
Ninth CFD Society of Canada Conference
, Waterloo, ON, Canada, May 27–29.http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.3796
28.
Pletcher
,
R. H.
,
Tannehill
,
J. C.
, and
Anderson
,
D. A.
,
2013
,
Computational Fluid Mechanics and Heat Transfer
,
3rd ed.
,
CRC Press
, Boca Raton, FL.
29.
Tucker
,
P. G.
,
2014
,
Unsteady Computational Fluid Dynamics in Aeronautics
,
Springer
,
Amsterdam, The Netherlands
.
30.
Shao
,
J.
, and
Zhang
,
C.
,
2006
, “
Numerical Analysis of the Flow Around a Circular Cylinder Using RANS and LES
,”
Int. J. Comput. Fluid Dyn.
,
20
(
5
), pp.
301
307
.
31.
Piomelli
,
U.
,
2014
, “
Large Eddy Simulations in 2030 and Beyond
,”
Philos. Trans. R. Soc. London A
,
372
(
2022
), p. 20130320.
32.
Zhiyin
,
Y.
,
2015
, “
Large-Eddy Simulation: Past, Present and the Future
,”
Chin. J. Aeronaut.
,
28
(
1
), pp.
11
24
.
33.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid Scale Eddy Viscosity Model
,”
Phys. Fluids A: Fluid Dyn.
,
3
(
7
), pp.
1760
1765
.
34.
Žukauskas
,
A.
, and
Šlančiauskas
,
A.
,
1987
,
Heat Transfer in Turbulent Fluid Flows
,
Hemisphere Publishing Corporation
,
Washington, DC
.
35.
Abdelhady
,
M.
,
2017
, “
Assessing the Accuracy of Convective Heat Transfer From Overhead Conductor at Low Wind Speed Using Large Eddy Simulations (LES)
,” M.Sc. dissertation, University of Calgary, Calgary, AB, Canada.
36.
Lu
,
L.
,
Doering
,
C. R.
, and
Busse
,
F. H.
,
2004
, “
Bounds on Convection Driven by Internal Heating
,”
J. Math. Phys.
,
45
(
7
), pp.
2967
2986
.
37.
Leonard
,
A.
,
1975
, “
Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows
,”
Adv. Geophys.
,
18
, pp.
237
248
.
38.
De Villiers
,
E.
,
2006
, “
The Potential of Large Eddy Simulation for the Modeling of Wall Bounded Flows
,” Doctoral dissertation, Imperial College of Science, Technology and Medicine, London.
39.
Gatski
,
T. B.
,
Hussaini
,
M. Y.
, and
Lumley
,
J. L.
, ed.,
1996
,
Simulation and Modeling of Turbulent Flows
,
Oxford University Press
, New York.
40.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp. 99–164.
41.
Liaw
,
K.
,
2005
, “
Simulation of Flow Around Bluff Bodies and Bridge Deck Sections Using CFD
,” Ph.D. thesis, University of Nottingham, Nottingham, UK.
42.
Tabor
,
G.
, and
Baba-Ahmadi
,
M.
,
2010
, “
Inlet Conditions for Large Eddy Simulation: A Review
,”
Comput. Fluids
,
39
(
4
), pp.
553
567
.
43.
Tabor
,
G.
,
Baba-Ahmadi
,
M.
,
De Villiers
,
E.
, and
Weller
,
H.
,
2004
, “
Construction of Inlet Conditions for LES of Turbulent Channel Flow
,” European Congress on Computational Methods in Applied Sciences and Engineering (
ECCOMAS 2004
), Jyväskylä, Finland, July 24–28.http://www.mit.jyu.fi/eccomas2004/proceedings/pdf/1116.pdf
44.
Chung
,
Y. M.
, and
Sung
,
H. J.
,
1997
, “
Comparative Study of Inflow Conditions for Spatially Evolving Simulation
,”
AIAA J.
,
35
(
2
), pp.
269
274
.
45.
Baba-Ahmadi
,
M.
, and
Tabor
,
G.
,
2009
, “
Inlet Conditions for LES Using Mapping and Feedback Control
,”
Comput. Fluids
,
38
(
6
), pp.
1299
1311
.
46.
Keating
,
A.
,
Piomelli
,
U.
,
Balaras
,
E.
, and
Kaltenbach
,
H.-J.
,
2004
, “
A Priori and a Posteriori Tests of Inflow Conditions for Large-Eddy Simulation
,”
Phys. Fluids
,
16
(
12
), pp.
4696
4712
.
47.
Torrano
,
I.
,
Martinez-Agirre
,
M.
, and
Tutar
,
M.
,
2016
, “
LES Study of Grid-Generated Turbulent Inflow Conditions With Moderate Number of Mesh Cells at Low Re Numbers
,”
Int. J. Comput. Fluid Dyn.
,
30
(
2
), pp.
141
154
.
48.
Blackmore
,
T.
,
Batten
,
W. M.
, and
Bahaj
,
A. S.
,
2013
, “
Inlet Grid-Generated Turbulence for Large-Eddy Simulations
,”
Int. J. Comput. Fluid Dyn.
,
27
(
6–7
), pp.
307
315
.
49.
Hemmati
,
A.
,
2015
, “
Evolution of Large-Scale Structures in the Wake of Sharp-Edge Thin Flat Bodies
,” Doctoral dissertation, University of Calgary, Calgary, AB, Canada.
50.
Meyer
,
M.
,
Hickel
,
S.
, and
Adams
,
N.
,
2010
, “
Assessment of Implicit Large-Eddy Simulation With a Conservative Immersed Interface Method for Turbulent Cylinder Flow
,”
Int. J. Heat Fluid Flow
,
31
(
3
), pp.
368
377
.
51.
Wissink
,
J.
, and
Rodi
,
W.
,
2008
, “
Numerical Study of the Near Wake of a Circular Cylinder
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
1060
1070
.
52.
Kataoka
,
H.
, and
Mizuno
,
M.
,
2002
, “
Numerical Flow Computation Around Aeroelastic 3D Square Cylinder Using Inflow Turbulence
,”
Wind Struct.
,
5
(
2–4
), pp.
379
392
.
53.
Pereira
,
F. S.
,
Vaz
,
G.
, and
Eça
,
L.
,
2015
, “
Flow Past a Circular Cylinder: A Comparison Between RANS and Hybrid Turbulence Models for a Low Reynolds Number
,”
ASME
Paper No. OMAE2015-41235.
54.
Roach
,
P.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.
55.
Eça
,
L.
,
Vaz
,
G.
,
Rosetti
,
G.
, and
Pereira
,
F.
,
2014
, “
On the Numerical Prediction of the Flow Around Smooth Circular Cylinders
,”
ASME
Paper No. OMAE2014-23230.
56.
Ferziger
,
J.
, and
Perić
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
,
3rd ed.
,
Springer
,
Berlin
.
57.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Introduction to Heat Transfer
,
6th ed.
,
Wiley
,
New York
.
58.
ANSYS
,
2015
, “
ANSYS Fluent User's Guide. Release 16.2
,”
ANSYS
,
Canonsburg, PA
.
59.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
2nd ed.
,
Pearson Education Limited
,
UK
.
60.
ANSYS
,
2015
, “
ANSYS Fluent Theory Guide. Release 16.2
,”
ANSYS
,
Canonsburg, PA
.
61.
Menter
,
F. R.
,
2015
, “
Best Practice: Scale-Resolving Simulations in ANSYS CFD. Version 2.00
,”
ANSYS
,
Canonsburg, PA
.
62.
Mathey
,
F.
,
Cokljat
,
D.
,
Bertoglio
,
J.-P.
, and
Sergent
,
E.
,
2006
, “
Specification of LES Inlet Boundary Condition Using Vortex Method
,”
Prog. Comput. Fluid Dyn.
,
6
(
1/2/3
), pp.
58
67
.
63.
Mittal
,
R.
,
1995
, “
Large-Eddy Simulation of Flow Past a Circular Cylinder
,” Annual Research Briefs, Center for Turbulence Research, Stanford, CA.
64.
Bailly
,
C.
, and
Comte-Bellot
,
G.
,
2015
,
Turbulence
,
Springer International Publishing
, New York.
65.
Van Der Hegge Zijnen
,
B. G.
,
1958
, “
Measurements of the Intensity, Integral Scale and Microscale of Turbulence Downstream of Three Grids in a Stream of Air
,”
Appl. Sci. Res., Sect. A
,
7
(
2–3
), pp.
149
174
.
66.
O'Neill
,
P. L.
,
Nicolaides
,
D.
,
Honnery
,
D.
, and
Soria
,
J.
,
2004
, “
Autocorrelation Functions and the Determination of Integral Length With Reference to Experimental and Numerical Data
,”
15th Australian Fluid Mechanics Conference
, Sydney, Australia, Dec. 13–17.https://www.researchgate.net/publication/253210572_Autocorrelation_Functions_and_the_Determination_of_Integral_Length_with_Reference_to_Experimental_and_Numerical_Data
67.
Ko
,
S. C.
, and
Graf
,
W. H.
,
1972
, “
Drag Coefficient of Cylinders in Turbulent Flow
,”
J. Hydraul. Div.
,
98
(5), pp.
897
912
.
68.
Galloway
,
T. R.
, and
Sage
,
B. H.
,
1967
, “
Local and Macroscopic Transport From a 1.5 in. Cylinder in a Turbulent Air Stream
,”
AIChE J.
,
13
(
3
), pp.
563
570
.
69.
Zdravkovich
,
M.
,
1990
, “
Conceptual Overview of Laminar and Turbulent Flows Past Smooth and Rough Circular Cylinders
,”
J. Wind Eng. Ind. Aerodyn.
,
33
(
1–2
), pp.
53
62
.
70.
Cantwell
,
B.
, and
Coles
,
D.
,
1983
, “
An Experimental Study of Entrainment and Transport in the Turbulent Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
136
(
1
), pp.
321
374
.
71.
Kakaç
,
S.
,
Shah
,
R. K.
, and
Aung
,
W.
,
1987
,
Handbook of Single-Phase Convective Heat Transfer
,
Wiley
, New York.
72.
Norberg
,
C.
,
2003
, “
Fluctuating Lift on a Circular Cylinder: Review and New Measurements
,”
J. Fluids Struct.
,
17
(
1
), pp.
57
96
.
73.
Norberg
,
C.
,
1987
, “
Effects of Reynolds Number and a Low-Intensity Freestream Turbulence on the Flow Around a Circular Cylinder
,” Chalmers University of Technology, Gothenburg, Sweden, Report No. 87/2.
74.
Norberg
,
C.
,
1998
, “
LDV-Measurements in the Near Wake of a Circular Cylinder
,” Advances in the Understanding of Bluff Body Wakes and Vortex-Induced Vibrations (BBVIV-1), ASME Paper No. FEDSM98-521.
75.
Lysenko
,
D. A.
,
Ertesvåg
,
I. S.
, and
Rian
,
K. E.
,
2012
, “
Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox
,”
Flow, Turbul. Combust.
,
89
(
4
), pp.
491
518
.
76.
Wieselsberger
,
C.
,
1922
, “
New Data on the Laws of Fluid Resistance
,” National Advisory Committee for Aeronautics, Washington, DC, Report No. NACA-TN-84.
77.
Thangadurai
,
M.
,
Singh
,
M.
,
Kumar
,
V.
, and
Chatterjee
,
P. K.
,
2017
,
Effect of Free Stream Turbulence on Flow Over a Circular Cylinder in the Sub-Critical Regime: An Experimental Investigation
,
Springer
,
New Delhi, India
, pp.
1253
1262
.
78.
Norberg
,
C.
, and
Sunden
,
B.
,
1984
, “
Influence of Stream Turbulence Intensity and Eddy Size on the Fluctuating Pressure Forces on a Single Tube
,”
ASME Symposium on Flow-Induced Vibrations
, New Orleans, LA, Dec. 9–14, pp. 43–56.https://www.researchgate.net/publication/272175002_Influence_of_stream_turbulence_intensity_and_eddy_size_on_the_fluctuating_pressure_forces_on_a_single_tube
79.
Kravchenko
,
A. G.
, and
Moin
,
P.
,
2000
, “
Numerical Studies of Flow Over a Circular Cylinder at ReD = 3900
,”
Phys. Fluids
,
12
(
2
), pp.
403
417
.
80.
Dyban
,
Y. P.
,
Epik
,
E. Y.
, and
Kozlova
,
L. G.
,
1974
, “
Effect of Free Stream Turbulence on Flow Past a Circular Cylinder
,”
Fluid Mech. Sov. Res.
,
3
(5), pp.
75
78
.
81.
Basu
,
R.
,
1986
, “
Aerodynamic Forces on Structures of Circular Cross-Section—Part 2: The Influence of Turbulence and Three-Dimensional Effects
,”
J. Wind Eng. Ind. Aerodyn.
,
24
(
1
), pp.
33
59
.
82.
Sarma
,
T. S.
, and
Sukhatme
,
S. P.
,
1977
, “
Local Heat Transfer From a Horizontal Cylinder to Air in Cross Flow: Influence of Free Convection and Free Stream Turbulence
,”
Int. J. Heat Mass Transfer
,
20
(
1
), pp.
51
56
.
83.
McAdams
,
W. H.
,
1954
,
Heat Transmission
,
3rd ed.
,
McGraw-Hill
,
New York
.
84.
Morgan
,
V.
,
1982
, “
The Thermal Rating of Overhead-Line Conductors—Part I: The Steady-State Thermal Model
,”
Electric Power Syst. Res.
,
5
(
2
), pp.
119
139
.
85.
Wood
,
D. H.
, and
Westphal
,
R. V.
,
1988
, “
Measurements of the Free-Stream Fluctuations Above a Turbulent Boundary Layer
,”
Phys. Fluids
,
31
(
10
), pp.
2834
2840
.
86.
Hunt
,
L.
,
Downs
,
R.
,
Kuester
,
M.
,
White
,
E.
, and
Saric
,
W.
,
2010
, “
Flow Quality Measurements in the Klebanoff-Saric Wind Tunnel
,”
AIAA
Paper No. 2010-4538.
87.
Lighthill
,
M.
,
1950
, “
Contributions to the Theory of Heat Transfer Through a Laminar Boundary Layer
,” Vol.
202
, Royal Society of London, London, pp.
359
377
.
88.
Krall
,
K. M.
, and
Eckert
,
E. R. G.
,
1973
, “
Local Heat Transfer Around a Cylinder at Low Reynolds Number
,”
ASME J. Heat Transfer
,
95
(
2
), pp.
273
275
.
You do not currently have access to this content.