This paper presents the results of an experimental study on the influence of swirl number (S) and primary zone airflow rate on the temperature, emission indices of the pollutants, and combustion efficiency in an atmospheric pressure liquid-fueled gas turbine (GT) combustor, equipped with a swirling jet air blast atomizer and operated with Jet A1 fuel. Experiments were conducted at three primary zone air flow rates and three swirl numbers (0.49, 0.86, and 1.32). For all the cases, it was found that the NOx emissions were very low (< 2 g/kg of fuel). At all the swirl numbers, an increase in primary zone airflow led to a nonmonotonous variation in CO while minimally affecting the NOx emissions. However, increase in the swirl number generated relatively higher NOx and lower CO owing to higher temperature resulting from efficient combustion caused by a superior fuel–air mixing. Also, the unburnt hydrocarbons (UHC) was quite high at S = 0.49 because of the unmixedness of fuel and air, and zero at S = 0.86 and 1.32. The combustion efficiency was very low (around 60%) at S = 0.49 while almost 100% at S = 0.86 and 1.32. The study conducted demonstrates a significant dependence of emissions and GT performance on the swirl number governed by the convective time scales and the residence time of the combustible mixture in the combustion zone.

References

References
1.
Widiyanto
,
A.
,
Kato
,
S.
,
Maruyama
,
N.
, and
Kojima
,
Y.
,
2003
, “
Environmental Impact of Fossil Fuel Fired Co-Generation Plants Using a Numerically Standardized LCA Scheme
,”
ASME J. Energy Resour. Technol.
,
125
(
1
), pp.
9
16
.
2.
Curtis
,
L.
,
Rea
,
W.
,
Smith
,
P.
,
Fenyves
,
E.
, and
Pan
,
Y.
,
2006
, “
Adverse Health Effects of Outdoor Air Pollutants
,”
Environ. Int.
,
32
(
6
), pp.
815
830
.
3.
Vellini
,
M.
, and
Tonziello
,
J.
,
2011
, “
Hydrogen Use in an Urban District: Energy and Environmental Comparisons
,”
ASME J. Energy Resour. Technol.
,
132
(
4
), p.
042601
.
4.
Desmira
,
N.
,
Kitagawa
,
K.
, and
Gupta
,
A. K.
,
2013
, “
Hydroxyl and Nitric Oxide Distribution in Waste Rice Bran Biofuel-Octanol Flames
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
014501
.
5.
Ramanathan
,
V.
, and
Feng
,
Y.
,
2009
, “
Air Pollution, Greenhouse Gases and Climate Change: Global and Regional Perspectives
,”
Atmos. Environ.
,
43
(
1
), pp.
37
50
.
6.
Lieuwen
,
T.
, and
Yang
,
V.
,
2013
,
Gas Turbine Emissions
,
Cambridge University Press
,
New York
, Chap. 7.
7.
Amabile
,
S.
,
Cutrone
,
L.
, and
Battista
,
F.
,
2010
, “
Analysis of a Low-Emission Combustion Strategy for a High Performance Trans-Atmospheric Aircraft Engine
,”
AIAA
Paper No. 2010-6549.
8.
Dhanuka
,
S. K.
,
Temme
,
J. E.
,
Driscoll
,
J. F.
, and
Mongia
,
H. C.
,
2009
, “
Vortex-Shedding and Mixing Layer Effects on Periodic Flashback in a Lean Premixed Prevaporized Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2901
2908
.
9.
Wünning
,
J. A.
, and
Wünning
,
J. G.
,
1997
, “
Flameless Oxidation to Reduce Thermal NO-Formation
,”
Prog. Energy Combust. Sci.
,
23
(
1
), pp.
81
94
.
10.
Sadanandan
,
R.
,
Lükerath
,
R.
,
Meier
,
W.
, and
Wahl
,
C.
,
2011
, “
Flame Characteristics and Pollutant Emissions in Flameless Combustion Under Gas Turbine Relevant Conditions
,”
J. Propul. Power
,
27
(
5
), pp.
970
980
.
11.
Røkke
,
P. E.
, and
Hustad
,
J. E.
,
2005
, “
Exhaust Gas Recirculation in Gas Turbines for Reduction of CO2 Emissions; Combustion Testing With Focus on Stability and Emissions
,”
Int. J. Thermodyn.
,
8
(
4
), pp.
167
173
.https://www.researchgate.net/profile/Johan_Hustad/publication/42539881_Exhaust_Gas_Recirculation_in_Gas_Turbines_for_Reduction_of_CO2_Emissions_Combustion_Testing_with_Focus_on_Stability_and_Emissions/links/00b7d52eea766d184f000000.pdf
12.
Li
,
H.
,
ElKady
,
A. M.
, and
Evulet
,
A. T.
,
2009
, “
Effect of Exhaust Gas Recirculation on NOx Formation in Premixed Combustion System
,”
AIAA
Paper No. 2009-226.
13.
Katsuki
,
M.
, and
Hasegawa
,
T.
,
1998
, “
The Science and Technology of Combustion in Highly Preheated Air
,”
Proc. Combust. Inst.
,
27
(
2
), pp.
3135
3146
.
14.
Choi
,
G.-M.
, and
Katsuki
,
M.
,
2000
, “
New Approach to Low Emission of Nitric Oxides From Furnaces Using Highly Pre-Heated Air Combustion
,”
J. Energy Inst.
,
73
(
194
), pp.
18
24
.https://www.researchgate.net/publication/289122877_New_approach_to_low_emission_of_nitric_oxides_from_furnaces_using_highly_pre-heated_air_combustion
15.
Gupta
,
A. K.
,
Bolz
,
S.
, and
Hasegawa
,
T.
,
1999
, “
Effect of Air Preheat Temperature and Oxygen Concentration on Flame Structure and Emission
,”
ASME J. Energy Resour. Technol.
,
121
(
3
), pp.
209
216
.
16.
Arghode
,
V. K.
,
Gupta
,
A. K.
, and
Bryden
,
K. M.
,
2012
, “
High Intensity Colorless Distributed Combustion for Ultra Low Emissions and Enhanced Performance
,”
Appl. Energy
,
92
, pp.
822
830
.
17.
Arghode
,
V. K.
,
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2013
, “
Role of Thermal Intensity on Operational Characteristics and Ultra-Low Emission Distributed Combustion
,”
Appl. Energy
,
111
, pp.
930
956
.
18.
Bobba
,
M. K.
,
Gopalakrishnan
,
P.
,
Periagaram
,
K.
, and
Seitzman
,
J. M.
,
2008
, “
Flame Structure and Stabilization Mechanisms in a Stagnation-Point Reverse-Flow Combustor
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
031505
.
19.
Zinn
,
B. T.
,
Neumeier
,
Y.
,
Seitzman
,
J. M.
,
Jagoda
,
J.
, and
Hashmonay
,
B.
,
2007
, “
Stagnation Point Reverse Flow Combustor for a Combustion System
,” Georgia Tech Research Corp., Atlanta, GA, U.S. Patent No.
7168949
.https://patents.google.com/patent/US7168949B2/en
20.
Cavliere
,
A.
, and
De Joannon
,
M.
,
2004
, “
Mild Combustion
,”
Prog. Energy Combust. Sci.
,
30
(
4
), pp.
329
366
.
21.
Zeldovich
,
Y. B.
,
1946
, “
The Oxidation of Nitrogen in Combustion and Explosions
,”
Acta Physicochimica U.R.S.S.
,
21
, pp.
577
628
.
22.
Fenimore
,
C. P.
,
1971
, “
Formation of Nitric Oxide in Premixed Hydrocarbon Flames
,”
Proc. Combust. Inst.
,
13
(
1
), pp.
373
380
.
23.
Flamme
,
M.
,
Al-Halbouni
,
A.
,
Wünning
,
J. G.
,
Scherer
,
V.
,
Schlieper
,
M.
,
Aigner
,
M.
,
Lückerath
,
R.
,
Noll
,
B.
,
Stöhr
,
R.
, and
Binninger
,
B.
,
2003
, “
Low Emission Gas Turbine Combustors Based on Flameless Combustion
,”
European Combustion Meeting
,
Orleans, France
,
Oct. 25–28
, pp.
25
28
.
24.
Guillou
,
E.
,
Cornwell
,
M.
, and
Gutmark
,
E.
,
2009
, “
Application of ‘Flameless’ Combustion for Gas Turbine Engines
,”
AIAA
Paper No. 2009-225.
25.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Kent, UK
.
26.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.
27.
Syred
,
N.
, and
Beer
,
J. M.
,
1974
, “
Combustion in Swirling Flows: A Review, Combustion and Flame
,”
Combust. Flame
,
23
(
2
), pp.
143
201
.
28.
Samuelsen
,
G. S.
,
2006
, “
The Gas Turbine Handbook: Conventional Type Combustion
,” U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, Pittsburgh, PA, Report No. DOE/NETL-2006-1230.
29.
Claypole
,
T. C.
, and
Syred
,
N.
,
1981
, “
The Effect of Swirl Burner Aerodynamics on NOx Formation
,”
Symp. (Int.) Combust.
,
18
(
1
), pp.
81
89
.
30.
Zhou
,
L.
,
Chen
,
X.
, and
Zhang
,
J.
,
2002
, “
Studies on the Effect of Swirl on NO Formation in Methane/Air Turbulent Combustion
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
2235
2242
.
31.
Pourhoseini
,
S. H.
, and
Asadi
,
R.
,
2016
, “
An Experimental Study of Optimum Angle of Air Swirler Vanes in Liquid Fuel Burners
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032202
.
32.
Juvva
,
D.
,
Burela
,
S.
,
Mariappan
,
S.
, and
Kushari
,
A.
,
2017
, “
Design Philosophy of a Laboratory Scaled Pragmatic Gas Turbine Combustor
,” First National Aerospace Propulsion Conference, Kanpur, India, Mar. 15–17, Paper No. NAPC-2017-023.
33.
Burela
,
S.
,
2015
, “
Combustion Instabilities in Gas Turbine Combustors
,” Master's thesis, Department of Aerospace Engineering, Indian Institute of Technology, Kanpur, India.
34.
Lokini
,
P.
,
2018
, “
Study of Emissions in an Atmospheric Pressure Gas Turbine Combustor Rig
,” Master's thesis, Department of Aerospace Engineering, Indian Institute of Technology, Kanpur, India.
35.
Saravanamuttoo
,
H.
,
Rogers
,
G.
, and
Cohen
,
H.
,
1996
,
Gas Turbine Theory
,
4th ed.
,
Longman Group Limited
,
Essex, UK
.
36.
Beer
,
J. M.
, and
Chigier
,
N. A.
,
1972
,
Combustion Aerodynamics
,
Applied Science Publishers Ltd
, London.
37.
Singh
,
A.
,
2015
, “
A Fundamental Study of Boundary Layer Diffusion Flames
,”
Ph.D. thesis
, University of Maryland, College Park, MD.https://drum.lib.umd.edu/handle/1903/17068
38.
Collis
,
D.
, and
Williams
,
M.
,
1959
, “
Two-Dimensional Convection From Heated Wires at Low Reynolds Numbers
,”
J. Fluid Mech.
,
6
(
3
), pp.
357
384
.
39.
Shaddix
,
C. R.
,
1999
, “
Correcting Thermocouple Measurements for Radiation Loss: A Critical Review
,”
33rd National Heat Transfer Conference
,
Albuquerque, NM
,
Aug. 15–17
, pp.
99
282
.
40.
Jakob
,
L. M.
,
1967
,
Heat Transfer
, Vol.
1
,
Wiley
,
New York
.
41.
Hodgman
,
C. D.
,
Weast
,
R. C.
, and
Selby
,
S. M.
,
1961
,
Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data
,
Chemical Rubber Publishing Company
, Boca Raton, FL.
42.
Sasaki
,
S.
,
Masuda
,
H.
,
Higano
,
M.
, and
Hishinuma
,
N.
,
1994
, “
Simultaneous Measurements of Specific Heat and Total Hemispherical Emissivity of Chromel and Alumel by a Transient Calorimetric Technique
,”
Int. J. Thermophys.
,
15
(
3
), pp.
547
565
.
43.
Turns
,
S. R.
,
2000
,
An Introduction to Combustion: Concepts and Applications
,
2nd ed.
,
WCB/McGraw-Hill
,
Boston, MA
.
44.
Şöhret
,
Y.
,
Kincay
,
O.
, and
Karakoc
,
T.
,
2015
, “
Combustion Efficiency Analysis and Key Emission Parameters of a Turboprop Engine at Various Loads
,”
J. Energy Inst.
,
88
(
4
), pp.
490
499
.
You do not currently have access to this content.