This paper presents a methodology to predict and optimize performance of an organic Rankine cycle (ORC) using a back propagation neural network (BPNN) for diesel engine waste heat recovery. A test bench of an ORC with a diesel engine is established to collect experimental data. The collected data are used to train and test a BPNN model for performance prediction and optimization. After evaluating different hidden layers, a BPNN model of the ORC system is determined with the consideration of mean squared error (MSE) and correlation coefficient. The effects of key operating parameters on the power output of the ORC system and exhaust temperature at the outlet of the evaporator are evaluated using the proposed model and further discussed. Finally, a multi-objective optimization of the ORC system is conducted for maximizing power output and minimizing exhaust temperature at the outlet of the evaporator based on the proposed BPNN model. The results show that the proposed BPNN model has a high prediction accuracy and the maximum relative error of the power output is less than 5%. It also shows that when the operations are optimized based on the proposed model, the power output of the ORC system can be higher than the experimental results.

References

References
1.
Jacobs
,
T. J.
,
2015
, “
Waste Heat Recovery Potential of Advanced Internal Combustion Engine Technologies
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042004
.
2.
Karim
,
A.
, and
Shahid
,
Z.
,
2018
, “
Performance and Cost Analysis of Conventional Petrol Car Converted Into Solar-Electric Hybrid Car
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032009
.
3.
Adler
,
J.
, and
Bandhauer
,
T.
,
2017
, “
Performance of a Diesel Engine at High Coolant Temperatures
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062203
.
4.
Yang
,
F. B.
,
Dong
,
X. R.
,
Zhang
,
H. G.
,
Wang
,
Z.
,
Yang
,
K.
,
Zhang
,
J.
,
Wang
,
E. H.
,
Liu
,
H.
, and
Zhao
,
G. Y.
,
2014
, “
Performance Analysis of Waste Heat Recovery With a Dual Loop Organic Rankine Cycle (ORC) System for Diesel Engine Under Various Operating Conditions
,”
Energy Convers. Manag.
,
80
, pp.
243
255
.
5.
Srinivasan
,
K. K.
,
Mago
,
P. J.
, and
Krishnan
,
S. R.
,
2010
, “
Analysis of Exhaust Waste Heat Recovery From a Dual Fuel Low Temperature Combustion Engine Using an Organic Rankine Cycle
,”
Energy
,
35
(
6
), pp.
2387
2399
.
6.
Quoilin
,
S.
,
Broek
,
M. V. D.
,
Declaye
,
S.
,
Dewallef
,
P.
, and
Lemort
,
V.
,
2013
, “
Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
168
186
.
7.
Usman
,
M.
,
Imran
,
M.
,
Yang
,
Y. M.
, and
Park
,
B. S.
,
2016
, “
Impact of Organic Rankine Cycle System Installation on Light Duty Vehicle Considering Both Positive and Negative Aspects
,”
Energy Convers. Manag.
,
112
, pp.
382
394
.
8.
Yang
,
F. B.
,
Zhang
,
H. G.
,
Song
,
S. S.
,
Bei
,
C.
,
Wang
,
H. J.
, and
Wang
,
E. H.
,
2015
, “
Thermoeconomic Multi-Objective Optimization of an Organic Rankine Cycle for Exhaust Waste Heat Recovery of a Diesel Engine
,”
Energy
,
93
(Part 2), pp.
2208
2228
.
9.
Wang
,
E. H.
,
Yu
,
Z. B.
,
Zhang
,
H. G.
, and
Yang
,
F. B.
,
2017
, “
A Regenerative Supercritical-Subcritical Dual-Loop Organic Rankine Cycle System for Energy Recovery From the Waste Heat of Internal Combustion Engines
,”
App. Energy
,
190
, pp.
574
590
.
10.
Wang
,
X.
,
Shu
,
G. Q.
,
Tian
,
H.
,
Liu
,
P.
,
Jing
,
D. Z.
, and
Li
,
X. Y.
,
2017
, “
Dynamic Analysis of the Dual-Loop Organic Rankine Cycle for Waste Heat Recovery of a Natural Gas Engine
,”
Energy Convers. Manag.
,
148
, pp.
724
736
.
11.
Yang
,
F. B.
,
Zhang
,
H. G.
,
Bei
,
C.
,
Song
,
S. S.
, and
Wang
,
E. H.
,
2015
, “
Parametric Optimization and Performance Analysis of ORC (Organic Rankine Cycle) for Diesel Engine Waste Heat Recovery With a Fin-and-Tube Evaporator
,”
Energy
,
91
, pp.
128
141
.
12.
Galindo
,
J.
,
Ruiz
,
S.
,
Dolz
,
V.
, and
Royo-Pascual
,
L.
,
2016
, “
Advanced Exergy Analysis for a Bottoming Organic Rankine Cycle Coupled to an Internal Combustion Engine
,”
Energy Convers. Manag.
,
126
, pp.
217
227
.
13.
Chen
,
T.
,
Zhuge
,
W. L.
,
Zhang
,
Y. J.
, and
Zhang
,
L.
,
2017
, “
A Novel Cascade Organic Rankine Cycle (ORC) System for Waste Heat Recovery of Truck Diesel Engines
,”
Energy Convers. Manag.
,
138
, pp.
210
223
.
14.
Galindo
,
J.
,
Climent
,
H.
,
Dolz
,
V.
, and
Royo-Pascual
,
L.
,
2016
, “
Multi-Objective Optimization of a Bottoming Organic Rankine Cycle (ORC) of Gasoline Engine Using Swash-Plate Expander
,”
Energy Convers. Manag.
,
126
, pp.
1054
1065
.
15.
Zhao
,
R.
,
Zhang
,
H. G.
,
Song
,
S. S.
,
Tian
,
Y. M.
,
Yang
,
Y. X.
, and
Liu
,
Y.
,
2017
, “
Integrated Simulation and Control Strategy of the Diesel Engine–Organic Rankine Cycle (ORC) Combined System
,”
Energy Convers. Manag.
,
156
, pp.
639
654
.
16.
Wang
,
X. D.
,
Zhao
,
L.
,
Wang
,
J. L.
,
Zhang
,
W. Z.
,
Zhao
,
X. Z.
, and
Wu
,
W.
,
2010
, “
Performance Evaluation of a Low-Temperature Solar Rankine Cycle System Utilizing R245fa
,”
Sol. Energy
,
84
(
3
), pp.
353
364
.
17.
Pei
,
G.
,
Li
,
J.
,
Li
,
Y. Z.
,
Wang
,
D. Y.
, and
Ji
,
J.
,
2011
, “
Construction and Dynamic Test of a Small-Scale Organic Rankine Cycle
,”
Energy
,
36
(
5
), pp.
3215
3223
.
18.
Zhang
,
Y. Q.
,
Wu
,
Y. T.
,
Xia
,
G. D.
,
Ma
,
C. F.
,
Ji
,
W. N.
,
Liu
,
S. W.
,
Yang
,
K.
, and
Yang
,
F. B.
,
2014
, “
Development and Experimental Study on Organic Rankine Cycle System With Single-Screw Expander for Waste Heat Recovery From Exhaust of Diesel Engine
,”
Energy
,
77
, pp.
499
508
.
19.
Shu
,
G. Q.
,
Zhao
,
M. R.
,
Tian
,
H.
,
Wei
,
H. Q.
,
Liang
,
X. Y.
, and
Huo
,
Y. Z.
,
2016
, “
Experimental Investigation on Thermal OS/ORC (Oil Storage/Organic Rankine Cycle) System for Waste Heat Recovery From Diesel Engine
,”
Energy
,
107
, pp.
693
706
.
20.
Park
,
B. S.
,
Usman
,
M.
,
Imran
,
M.
, and
Pesyridis
,
A.
,
2018
, “
Review of Organic Rankine Cycle Experimental Data Trends
,”
Energy Convers. Manag.
,
173
, pp.
679
691
.
21.
Sudheer
,
K. P.
,
Gosain
,
A. K.
, and
Ramasastri
,
K. S.
,
2002
, “
A Data-Driven Algorithm for Constructing Artificial Neural Network Rainfall-Runoff Models
,”
Hydrol. Processes
,
16
(
6
), pp.
1325
1330
.
22.
Schmidhuber
,
J.
,
2015
, “
Deep Learning in Neural Networks: An Overview
,”
Neural Networks
,
61
, pp.
85
117
.
23.
Zhang
,
Y. D.
, and
Wu
,
L. N.
,
2009
, “
Stock Market Prediction of S&P 500 Via Combination of Improved BCO Approach and BP Neural Network
,”
Expert Syst. Appl.
,
36
(
5
), pp.
8849
8854
.
24.
Li
,
G.
, and
Shi
,
J.
,
2010
, “
On Comparing Three Artificial Neural Networks for Wind Speed Forecasting
,”
Appl. Energy
,
87
(
7
), pp.
2313
2320
.
25.
Zhao
,
J. X.
,
Xu
,
M.
,
Li
,
M.
,
Wang
,
B.
, and
Liu
,
S. Z.
,
2012
, “
Design and Optimization of an Atkinson Cycle Engine With the Artificial Neural Network Method
,”
Appl. Energy
,
92
, pp.
492
502
.
26.
Bhowmik
,
S.
,
Panua
,
R.
,
Debroy
,
D.
, and
Paul
,
A.
,
2017
, “
Artificial Neural Network Prediction of Diesel Engine Performance and Emission Fueled With Diesel–Kerosene–Ethanol Blends: A Fuzzy-Based Optimization
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042201
.
27.
Van
,
S. L.
, and
Chon
,
B. H.
,
2018
, “
Effective Prediction and Management of a CO2 Flooding Process for Enhancing Oil Recovery Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032906
.
28.
Paul
,
A.
,
Bhowmik
,
S.
,
Panua
,
R.
, and
Debroy
,
D.
,
2018
, “
Artificial Neural Network-Based Prediction of Performances-Exhaust Emissions of Diesohol Piloted Dual Fuel Diesel Engine Under Varying Compressed Natural Gas Flowrates
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112201
.
29.
Jung
,
H. C.
,
Taylor
,
L.
, and
Krumdieck
,
S.
,
2015
, “
An Experimental and Modelling Study of a 1 kW Organic Rankine Cycle Unit With Mixture Working Fluid
,”
Energy
,
81
, pp.
601
614
.
30.
Yamankaradeniz
,
N.
,
Bademlioglu
,
A. H.
, and
Kaynakli
,
O.
,
2018
, “
Performance Assessments of Organic Rankine Cycle With Internal Heat Exchanger Based on Exergetic Approach
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102001
.
31.
Yang
,
F. B.
,
Cho
,
H. J.
,
Zhang
,
H. G.
, and
Zhang
,
J.
,
2017
, “
Thermoeconomic Multi-Objective Optimization of a Dual Loop Organic Rankine Cycle (ORC) for CNG Engine Waste Heat Recovery
,”
Appl. Energy
,
205
, pp.
1100
1118
.
32.
Sarkar
,
J.
,
2018
, “
A Novel Pinch Point Design Methodology Based Energy and Economic Analyses of Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052004
.
33.
Yang
,
F. B.
,
Cho
,
H. J.
,
Zhang
,
H. G.
,
Zhang
,
J.
, and
Wu
,
Y. T.
,
2018
, “
Artificial Neural Network (ANN) Based Prediction and Optimization of an Organic Rankine Cycle (ORC) for Diesel Engine Waste Heat Recovery
,”
Energy Convers. Manag.
,
164
, pp.
15
26
.
34.
El-Emam
,
R. S.
, and
Dincer
,
I.
,
2017
, “
Assessment and Evolutionary Based Multi-Objective Optimization of a Novel Renewable-Based Polygeneration Energy System
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012003
.
You do not currently have access to this content.