This study evaluates the potential aggregate effects of net-zero energy building (NZEB) implementations on the electrical grid in a simulation-based analysis. To estimate the impact of NZEBs on the electrical grid, a simulation-based study of an office building with a grid-tied photovoltaic (PV) power generation system is conducted. This study assumes that net-metering is available for NZEBs such that the excess on-site PV generation can be fed to the electrical grid. The impact of electrical energy storage (EES) within NZEBs on the electrical grid is also considered in this study. Different levels of NZEB adoption are examined: 20%, 50%, and 100% of the U.S. office building stock. Results indicate that significant penetration of NZEBs could potentially affect the current U.S. electricity demand profiles by reducing purchased electricity from the electrical grid and by increasing exported electricity to the electrical grid during peak hours. Annual electricity consumption of simulated office NZEBs in the U.S. climate locations is in the range of around 94–132 kWh/m2 yr. Comparison of hourly electricity demand profiles for the actual U.S. demand versus the calculated net-demand on a national scales indicates that the peak percentage difference of the U.S. net-electricity demand includes about 10.7%, 15.2%, and 9.3% for 100% of the U.S. NZEB stock on representative summer, transition, and winter days, respectively. Using EES within NZEBs, the peak percentage differences are reduced and shifted to the afternoon, including 8.6%, 13.3%, and 6.3% for 100% of the U.S. NZEB stock on each representative day.

References

References
1.
EIA,
2017
, “
Annual Electric Power Review
,” U.S. Energy Information Administration, Washington, DC, accessed Nov. 6, 2017, https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_01
2.
Torcellini
,
P.
,
Pless
,
S.
,
Deru
,
M.
, and
Crawley
,
D.
,
2006
, “
Zero Energy Buildings: A Critical Look at the Definition
,” ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, Aug. 13–18..
3.
Crawley
,
D. B.
,
Pless
,
S.
, and
Torcellini
,
P.
,
2009
, “
Getting to Net Zero
,”
National Renewable Energy Laboratory
, Golden, CO, Report No. NREL/JA-550-46382.https://www.nrel.gov/docs/fy09osti/46382.pdf
4.
Sissine, F.
,
2007
, “Energy Independence and Security Act of 2007: A Summary of Major Provisions,” CRS Report for Congress, Order Code RL34294, Congressional Research Service, Dec. 19, 2007, Washington, DC.
5.
Aksamija
,
A.
,
2016
, “
Regenerative Design and Adaptive Reuse of Existing Commercial Buildings for Net-Zero Energy Use
,”
Sustainable Cities Soc.
,
27
, pp.
185
195
.
6.
Li
,
D. H. W.
,
Yang
,
L.
, and
Lam
,
J. C.
,
2013
, “
Zero Energy Buildings and Sustainable Development Implications—A Review
,”
Energy
,
54
, pp.
1
10
.
7.
Marszal
,
A. J.
,
Heiselberg
,
P.
,
Bourrelle
,
J. S.
,
Musall
,
E.
,
Voss
,
K.
,
Sartori
,
I.
, and
Napolitano
,
A.
,
2011
, “
Zero Energy Building—A Review of Definitions and Calculation Methodologies
,”
Energy Build.
,
43
(
4
), pp.
971
979
.
8.
Attia
,
S.
,
Eleftheriou
,
P.
,
Xeni
,
F.
,
Morlot
,
R.
,
Ménézo
,
C.
,
Kostopoulos
,
V.
,
Betsi
,
M.
,
Kalaitzoglou
,
I.
,
Pagliano
,
L.
,
Cellura
,
M.
,
Almeida
,
M.
,
Ferreira
,
M.
,
Baracu
,
T.
,
Badescu
,
V.
,
Crutescu
,
R.
, and
Hidalgo-Betanzos
,
J. M.
,
2017
, “
Overview and Future Challenges of Nearly Zero Energy Buildings (nZEB) Design in Southern Europe
,”
Energy Build.
,
155
, pp.
439
458
.
9.
Zhou
,
Z.
,
Feng
,
L.
,
Zhang
,
S.
,
Wang
,
C.
,
Chen
,
G.
,
Du
,
T.
,
Li
,
Y.
, and
Zuo
,
J.
,
2016
, “
The Operational Performance of ‘Net Zero Energy Building’: A Study in China
,”
Appl. Energy
,
177
, pp.
716
728
.
10.
Good
,
C.
,
Kristjansdottír
,
T.
,
Houlihan Wiberg
,
A.
,
Georges
,
L.
, and
Hestnes
,
A. G.
,
2016
, “
Influence of PV Technology and System Design on the Emission Balance of a Net Zero Emission Building Concept
,”
Sol. Energy
,
130
, pp.
89
100
.
11.
Salom
,
J.
,
Marszal
,
A. J.
,
Widén
,
J.
,
Candanedo
,
J.
, and
Lindberg
,
K. B.
,
2014
, “
Analysis of Load Match and Grid Interaction Indicators in Net Zero Energy Buildings With Simulated and Monitored Data
,”
Appl. Energy
,
136
, pp.
119
131
.
12.
Starn
,
J.
,
2018
, “Power Worth Less Than Zero Spreads as Green Energy Floods the Grid,“ accessed Aug. 25, 2018, https://www.bloomberg.com/news/articles/2018-08-06/negative-prices-in-power-market-as-wind-solar-cut-electricity
13.
Benato
,
A.
, and
Stoppato
,
A.
,
2017
, “
Energy and Cost Analysis of a New Packed Bed Pumped Thermal Electricity Storage Unit
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020904
.
14.
Javad Kasaei
,
M.
,
Gandomkar
,
M.
, and
Nikoukar
,
J.
,
2017
, “
Optimal Operational Scheduling of Renewable Energy Sources Using Teaching–Learning Based Optimization Algorithm by Virtual Power Plant
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062003
.
15.
Miller
,
A.
, and
Edelson
,
J.
,
2016
, “
Zero Net Energy Buildings and the Grid: The Future of Energy Building-Grid Interactions
,”
ASHRAE
Winter Conference, Orlando, FL, Jan. 23–27, Paper No. OR-16-C083.https://newbuildings.org/wp-content/uploads/2016/04/NetZeroEnergyBuildingsAndTheGrid.pdf
16.
Denholm
,
P.
,
O'Connell
,
M.
,
Brinkman
,
G.
, and
Jorgenson
,
J.
,
2015
, “
Overgeneration From Solar Energy in California: A Field Guide to the Duck Chart
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-6A20-65023
.https://www.nrel.gov/docs/fy16osti/65023.pdf
17.
Seljom
,
P.
,
Lindberg
,
K. B.
,
Tomasgard
,
A.
,
Doorman
,
G.
, and
Sartori
,
I.
,
2017
, “
The Impact of Zero Energy Buildings on the Scandinavian Energy System
,”
Energy
,
118
, pp.
284
296
.
18.
Dirks
,
J. A.
,
2010
, “
The Impact of Wide-Scale Implementation of Net Zero-Energy Homes on the Western Grid
,”
ACEEE Summer Study on Energy Efficiency in Buildings
, Pacific Grove, CA, Aug. 15–20, pp.
60
75
.
19.
U.S. DOE and PNNL
,
2016
, “
90.1 Prototype Building Models—Medium Office
,” U.S. Department of Energy, Washington, DC, accessed May 15, 2016, https://www.energycodes.gov/development/commercial/prototype_models#90.1
20.
Thornton
,
B.
,
Wang
,
W.
,
Xie
,
Y.
,
Cho
,
H.
,
Liu
,
B.
, and
Zhang
,
J.
,
2011
, “
Achieving the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard 90.1-2010
,” Pacific Northwest National Laboratory, Richland, WA, Report No. PNNL-20405.
21.
EIA
,
2016
, “
U.S. Electric System Operating Data
,” U.S. Energy Information Administration, Washington, DC, accessed Nov. 6, 2017, https://www.eia.gov/todayinenergy/detail.php?id=27212
22.
EIA
,
2016
, “
EIA-930 Data Users Guide and Known Issues
,” U.S. Energy Information Administration, Washington, DC, accessed Nov. 6, 2017, https://www.eia.gov/realtime_grid/docs/UserGuideAndKnownIssues.pdf
23.
Briggs
,
R. L.
,
Lucas
,
R. G.
, and
Taylor
,
Z. T.
,
2003
, “
Climate Classification for Building Energy Codes and Standards: Part 1—Development Process
,”
ASHRAE Trans.
,
109
, pp.
109
121
.https://search.proquest.com/openview/aae6f2740dedb677774cdff83a77a54e/1?cbl=34619&pq-origsite=gscholar
24.
ASHRAE
,
2011
, “
Energy Standard for Buildings Except Low-Rise Residential Buildings
,” ASHRAE, Atlanta, GA, ▪, ANSI/ASHRAE/IES Standard No. 90.1-2010.
25.
Jarnagin
,
R. E.
, and
Bandyopadhyay
,
G. K.
,
2010
, “
Weighting Factors for the Commercial Building Prototypes Used in the Development of ANSI/ASHRAE/IESNA Standard 90.1-2010
,” Pacific Northwest National Laboratory, Richland, WA, Report No.
PNNL-19116
.https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-19116.pdf
26.
EIA
,
2012
, “
2012 Commercial Buildings Energy Consumption Survey (CBECS)
,” U.S. Energy Information Administration, Washington, DC, accessed Nov. 6, 2017, https://www.eia.gov/consumption/commercial/data/2012/
27.
ASHRAE
,
2013
, “
Energy Standard for Buildings Except Low-Rise Residential Buildings (I-P)
,” ASHRAE, Atlanta, GA, ANSI/ASHRAE/IES Standard No. 90.1-2013.
28.
Hart
,
R. R.
,
Athalye
,
R. A.
,
Halverson
,
M. A.
,
Loper
,
S. A.
,
Rosenberg
,
M. I.
,
Xie
,
Y.
, and
Richman
,
E. E.
,
2015
, “
National Cost-effectiveness of ANSI/ASHRAE/IES Standard 90.1-2013
,” U.S. Energy Information Administration, Washington, DC, Contract No. DE-AC05-76RL01830.
29.
Goel
,
S.
,
Rosenberg
,
M.
,
Athalye
,
R.
, and
Xie
,
Y.
,
2014
, “
Enhancements to ASHRAE Standard 90.1 Prototype Building Models
,” Pacific Northwest National Laboratory, Richland, WA, Report No.
PNNL-23269
.https://www.energycodes.gov/sites/default/files/documents/PrototypeModelEnhancements_2014_0.pdf
30.
U.S. DOE
,
2016
, “EnergyPlus Version 8.6 Documentation: EnergyPlus Engineering Reference,” U.S. Department of Energy, Washington, DC.
31.
Sovacool
,
B. K.
,
2008
, “
Distributed Generation (DG) and the American Electric Utility System: What is Stopping It?
,”
ASME J. Energy Resour. Technol.
,
130
(
1
), p.
012001
.
32.
Wong
,
K. V.
,
2015
, “
Sustainable Engineering in the Global Energy Sector
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
024701
.
33.
U.S. DOE
,
2016
, “EnergyPlus Version 8.6 Documentation: Input Output Reference,” U.S. Department of Energy, Washington, DC.
34.
Sick
,
F.
,
2014
,
Photovoltaics in Buildings: A Design Handbook for Architects and Engineers
, Routledge, New York.
35.
California Energy Commission
,
2001
, “
A Guide to Photovoltaic (PV) System Design and Installation
, California Energy Technology Development Division, Sacramento, CA, Report No.
June 2001 500-01-020
.
36.
Olis
,
D.
,
Mosey
,
G.
,
Olis
,
D.
, and
Mosey
,
G.
,
2015
, “
Integration of Rooftop Photovoltaic Systems in St. Paul Ford Site's Redevelopment Plans
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-7A40-63418.https://www.stpaul.gov/sites/default/files/Media%20Root/Planning%20%26%20Economic%20Development/NREL%20Report%20-%20Ford%20Site%20Solar%20Potential%20-%20March%202015.pdf
37.
Sehar
,
F.
,
Pipattanasomporn
,
M.
, and
Rahman
,
S.
,
2016
, “
An Energy Management Model to Study Energy and Peak Power Savings From PV and Storage in Demand Responsive Buildings
,”
Appl. Energy
,
173
, pp.
406
417
.
38.
Solar Design Tool
,
2017
, “
LG LG230M1C (230W) Solar Panel
,” Solar Design Tool, Santa Cruz, CA, accessed Sept. 1, 2017, accessed http://www.solardesigntool.com/components/module-panel-solar/LG/1067/LG230M1C/specification-data-sheet.html
39.
Kaufmann
,
J.
,
Hand
,
J.
, and
Halverson
,
M.
,
2011
, “
Integrating Renewable Energy Requirements Into Building Energy Codes
,” U.S. Department of Energy, Washington, DC, Contract No.
DE-AC05-76RL01830
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.471.8057&rep=rep1&type=pdf
40.
Camps
,
X.
,
Velasco
,
G.
,
de la Hoz
,
J.
, and
Martín
,
H.
,
2015
, “
Contribution to the PV-to-Inverter Sizing Ratio Determination Using a Custom Flexible Experimental Setup
,”
Appl. Energy
,
149
, pp.
35
45
.
41.
Advanced Energy
,
2012
, “
DC Loading of PV Powered Inverters
,” AE Solar Energy, Bend, OR, accessed Sept. 1, 2017, http://solarenergy.advanced-energy.com/upload/file/pvp/dcloadingofpvpinverters_55-600100-75c.pdf
42.
California Public Utilities Commission Rule
,
2017
, “
Go Solar California
, Go Solar California, San Francisco, CA, accessed Sept. 1, 2017, http://www.gosolarcalifornia.org/equipment/inverters.php
43.
Yaskawa Solectria
,
2014
, “
YASAKAWA Solectria Solar Commercial Inverters
, Yaskawa Solectria Solar, Lawrence, MA, accessed Sept. 1, 2017, https://www.solectria.com//site/assets/files/1414/sgi_225-500_datasheet_december_2016_rev_k.pdf
44.
Upendra Roy
,
B. P.
, and
Rengarajan
,
N.
,
2016
, “
Feasibility Study of an Energy Storage System for Distributed Generation System in Islanding Mode
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
011901
.
45.
Sreekanth
,
K. J.
,
Al Foraih
,
R.
,
Al-Mulla
,
A.
, and
Abdulrahman
,
B.
,
2019
, “
Feasibility Analysis of Energy Storage Technologies in Power Systems for Arid Region
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
011901
.
46.
Kintner-Meyer
,
M. C.
,
Subbarao
,
K.
,
Kumar
,
N. P.
,
Bandyopadhyay
,
G.
,
Finley
,
C.
,
Koritarov
,
V. S.
,
Molburg
,
J. C.
,
Wang
,
J.
,
Zhao
,
F.
,
Brackney
,
L.
, and
Florita
,
A. R.
,
2010
, “
The Role of Energy Storage in Commercial Buildings: A Preliminary Report
,” Pacific Northwest National Laboratory, Richland, WA, Report No.
PNNL-19853
.https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-19853.pdf
47.
GMDE
, 2017, “5.2 kW/7.2 kWh Most Affordable Solar Battery Storage Solution,” Global Mainstream Dynamic Energy Technology, Shanghai, China, accessed Aug. 20, 2018, https://cdn.enfsolar.com/Product/pdf/storage_system/5a7bf6824e06f.pdf
48.
U.S. DOE
,
2010
, “
Building Performance Database Analysis Tools
, U.S. Department of Energy, Washington, DC, accessed Aug. 20, 2018, https://bpd.lbl.gov/#explore
49.
Brown
,
R. E.
,
Walter
,
T.
,
Dunn
,
L. N.
,
Custodio
,
C. Y.
,
Mathew
,
P. A.
, and
Berkeley
,
L.
,
2014
, “
Getting Real With Energy Data: Using the Buildings Performance Database to Support Data-Driven Analyses and Decision-Making
,”
ACEEE Summer Study on Energy Efficiency in Buildings
, Pacific Grove, CA, Aug. 17–22, pp.
49
60
.
You do not currently have access to this content.