In this study, the round trip efficiency of a multistage adiabatic compressed air energy storage (A-CAES) system was optimized by differential evolution (DE) algorithm, and decision variables were the pressure ratio of each compressor/expander. The variation of the pressure ratio of each compressor/expander leads to different inlet air temperatures of the heat exchanger. Thus, this optimization method provides more heat energy recovery from compression to increase the inlet air temperature of expanders. Results indicate that the optimization method is effective for the pressure ratio allocation, improving the system efficiency by ∼1% and exergy efficiency of the heat storage process by 5.3% to the maximum compared with an equal pressure ratio distribution A-CAES system. Besides, a uniformity factor of temperature difference (UFTD) of multistage heat exchangers is proposed to analyze the temperature uniformity of the multistage heat exchangers, which indicates that decreasing the UFTD contributes to an increased uniformity of the temperature field and an improvement in heat transfer efficiency. The study is extended onto optimal off-design system configuration and the recommendations are proposed, which provides a guidance for A-CAES system design.

References

References
1.
An
,
W.
,
Li
,
J.
,
Ni
,
J.
,
Taylor
,
R. A.
, and
Zhu
,
T.
,
2017
, “
Analysis of a Temperature Dependent Optical Window for Nanofluid-Based Spectral Splitting in PV/T Power Generation Applications
,”
Energy Convers. Manage.
,
151
, pp.
23
31
.
2.
An
,
W.
,
Wu
,
J. R.
,
Zhu
,
T.
, and
Zhu
,
Q. Z.
,
2016
, “
Experimental Investigation of a Concentrating PV/T Collector With Cu9S5 Nanofluid Spectral Splitting Filter
,”
Appl. Energy
,
184
, pp.
197
206
.
3.
Pan
,
Y.
,
Liu
,
L. C.
,
Zhu
,
T.
,
Zhang
,
T.
, and
Zhang
,
J. Y.
,
2017
, “
Feasibility Analysis on Distributed Energy System of Chongming County Based on RETScreen Software
,”
Energy
,
130
, pp.
298
306
.
4.
Hong
,
H.
,
Qibin
,
L.
, and
Jin
,
H.
,
2009
, “
Solar Hydrogen Production Integrating Low-Grade Solar Thermal Energy and Methanol Steam Reforming
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
012601
.
5.
Elia
,
S.
,
Gasulla
,
M.
, and
De Francesco
,
A.
,
2012
, “
Optimization in Distributing Wind Generators on Different Places for Energy Demand Tracking
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041202
.
6.
Li
,
S.
,
Sui
,
J.
,
Jin
,
H.
, and
Zheng
,
J.
,
2013
, “
Full Chain Energy Performance for a Combined Cooling, Heating and Power System Running With Methanol and Solar Energy
,”
Appl. Energy
,
112
, pp.
673
681
.
7.
Chowdhury
,
S.
,
Zhang
,
J.
,
Tong
,
W.
, and
Messac
,
A.
,
2014
, “
Modeling the Influence of Land-Shape on the Energy Production Potential of a Wind Farm Site
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011203
.
8.
Lund
,
H.
, and
Salgi
,
G.
,
2009
, “
The Role of Compressed Air Energy Storage (CAES) in Future Sustainable Energy Systems
,”
Energy Convers. Manage.
,
50
(
5
), pp.
1172
1179
.
9.
Mazloum
,
Y.
,
Sayah
,
H.
, and
Nemer
,
M.
,
2016
, “
Static and Dynamic Modeling Comparison of an Adiabatic Compressed Air Energy Storage System
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
062001
.
10.
Kushnir
,
R.
,
Ullmann
,
A.
, and
Dayan
,
A.
,
2012
, “
Thermodynamic Models for the Temperature and Pressure Variations Within Adiabatic Caverns of Compressed Air Energy Storage Plants
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
021901
.
11.
Tessier
,
M. J.
,
Floros
,
M. C.
,
Bouzidi
,
L.
, and
Narine
,
S. S.
,
2016
, “
Exergy Analysis of an Adiabatic Compressed Air Energy Storage System Using a Cascade of Phase Change Materials
,”
Energy
,
106
, pp.
528
534
.
12.
Khaitan
,
S. K.
, and
Raju
,
M.
,
2012
, “
Dynamics of Hydrogen Powered CAES Based Gas Turbine Plant Using Sodium Alanate Storage System
,”
Int. J. Hydrogen Energy
,
37
(
24
), pp.
18904
18914
.
13.
Cavallo
,
A.
,
2007
, “
Controllable and Affordable Utility-Scale Electricity From Intermittent Wind Resources and Compressed Air Energy Storage (CAES)
,”
Energy
,
32
(
2
), pp.
120
127
.
14.
Zafirakis
,
D.
, and
Kaldellis
,
J. K.
,
2010
, “
Autonomous Dual-Mode CAES Systems for Maximum Wind Energy Contribution in Remote Island Networks
,”
Energy Convers. Manage.
,
51
(
11
), pp.
2150
2161
.
15.
Yang
,
Z. W.
,
Wang
,
Z.
,
Ran
,
P.
,
Li
,
Z.
, and
Ni
,
W. D.
,
2014
, “
Thermodynamic Analysis of a Hybrid Thermal-Compressed Air Energy Storage System for the Integration of Wind Power
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
519
527
.
16.
Fabrizio
,
E.
,
Corrado
,
V.
, and
Filippi
,
M.
,
2010
, “
A Model to Design and Optimize Multi-Energy Systems in Buildings at the Design Concept Stage
,”
Renewable Energy
,
35
(
3
), pp.
644
655
.
17.
Adamek
,
F.
,
2008
, “
Optimal Multi Energy Supply for Regions With Increasing Use of Renewable Resources
,”
IEEE
Energy 2030 Conference
, Atlanta, GA, Nov. 17–18, pp.
357
362
.
18.
Khaitan
,
S. K.
, and
Raju
,
M.
,
2013
, “
Dynamic Simulation of Air Storage–Based Gas Turbine Plants
,”
Int. J. Energy Res.
,
37
(
6
), pp.
558
569
.
19.
Kushnir
,
R.
,
Dayan
,
A.
, and
Ullmann
,
A.
,
2012
, “
Temperature and Pressure Variations Within Compressed Air Energy Storage Caverns
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5616
5630
.
20.
Zhao
,
P.
,
Wang
,
J. F.
, and
Dai
,
Y. P.
,
2015
, “
Thermodynamic Analysis of an Integrated Energy System Based on Compressed Air Energy Storage (CAES) System and Kalina Cycle
,”
Energy Convers. Manage.
,
98
, pp.
161
172
.
21.
Li
,
Y. L.
,
Sciacovelli
,
A.
,
Peng
,
X. D.
,
Radcliffe
,
J.
, and
Ding
,
Y. L.
,
2016
, “
Integrating Compressed Air Energy Storage With a Diesel Engine for Electricity Generation in Isolated Areas
,”
Appl. Energy
,
171
, pp.
26
36
.
22.
Budt
,
M.
,
Wolf
,
D.
,
Span
,
R.
, and
Yan
,
J. Y.
,
2016
, “
A Review on Compressed Air Energy Storage: Basic Principles, Past Milestones and Recent Developments
,”
Appl. Energy
,
170
, pp.
250
268
.
23.
Jubeh
,
N. M.
, and
Najjar
,
Y. S. H.
,
2012
, “
Green Solution for Power Generation by Adoption of Adiabatic CAES System
,”
Appl. Therm. Eng.
,
44
, pp.
85
89
.
24.
Wang
,
S. X.
,
Zhang
,
X. L.
,
Yang
,
L. W.
,
Zhou
,
Y.
, and
Wang
,
J. J.
,
2016
, “
Experimental Study of Compressed Air Energy Storage System With Thermal Energy Storage
,”
Energy
,
103
, pp.
182
191
.
25.
Mei
,
S. W.
,
Wang
,
J. J.
,
Tian
,
F.
,
Chen
,
L. J.
,
Xue
,
X. D.
,
Lu
,
Q.
,
Zhou
,
Y.
, and
Zhou
,
X. X.
,
2015
, “
Design and Engineering Implementation of Non-Supplementary Fired Compressed Air Energy Storage System: TICC-500
,”
Sci. China: Technol. Sci.
,
58
(
4
), pp.
600
611
.
26.
Hartmann
,
N.
,
Vohringer
,
O.
,
Kruck
,
C.
, and
Eltrop
,
L.
,
2012
, “
Simulation and Analysis of Different Adiabatic Compressed Air Energy Storage Plant Configurations
,”
Appl. Energy
,
93
, pp.
541
548
.
27.
Agyenim
,
F.
,
Hewitt
,
N.
,
Eames
,
P.
, and
Smyth
,
M.
,
2010
, “
A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS)
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
615
628
.
28.
Grazzini
,
G.
, and
Milazzo
,
A.
,
2008
, “
Thermodynamic Analysis of CAES/TES Systems for Renewable Energy Plants
,”
Renewable Energy
,
33
(
9
), pp.
1998
2006
.
29.
Yang
,
K.
,
Zhang
,
Y.
,
Li
,
X. M.
, and
Xu
,
J. Z.
,
2014
, “
Theoretical Evaluation on the Impact of Heat Exchanger in Advanced Adiabatic Compressed Air Energy Storage System
,”
Energy Convers. Manage.
,
86
, pp.
1031
1044
.
30.
Zhang
,
Y.
,
Yang
,
K.
,
Li
,
X. M.
, and
Xu
,
J. Z.
,
2013
, “
The Thermodynamic Effect of Thermal Energy Storage on Compressed Air Energy Storage System
,”
Renewable Energy
,
50
, pp.
227
235
.
31.
Grazzini
,
G.
, and
Milazzo
,
A.
,
2012
, “
A Thermodynamic Analysis of Multistage Adiabatic CAES
,”
Proc. IEEE
,
100
(
2
), pp.
461
472
.
32.
Luo
,
X.
,
Wang
,
J. H.
,
Krupke
,
C.
,
Wang
,
Y.
,
Sheng
,
Y.
,
Li
,
J.
,
Xu
,
Y. J.
,
Wang
,
D.
,
Miao
,
S. H.
, and
Chen
,
H. S.
,
2016
, “
Modelling Study, Efficiency Analysis and Optimisation of Large-Scale Adiabatic Compressed Air Energy Storage Systems With Low-Temperature Thermal Storage
,”
Appl. Energy
,
162
, pp.
589
600
.
33.
Chen
,
S.
, and
Cui
,
G. M.
,
2016
, “
Uniformity Factor of Temperature Difference in Heat Exchanger Networks
,”
Appl. Therm. Eng.
,
102
, pp.
1366
1373
.
34.
Guo
,
Z. Y.
,
Zhou
,
S. Q.
,
Li
,
Z. X.
, and
Chen
,
L. G.
,
2002
, “
Theoretical Analysis and Experimental Confirmation of the Uniformity Principle of Temperature Difference Field in Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
45
(
10
), pp.
2119
2127
.
You do not currently have access to this content.