Recent developments in the weather research and forecasting (WRF) model have made it possible to accurately estimate incident solar radiation. This study couples the WRF-solar modifications with a multilayer urban canopy and building energy model (BEM) to create a unified WRF forecasting system called urban WRF–solar (uWRF-solar). This paper tests the integrated approach in the New York City (NYC) metro region as a sample case. Hourly forecasts are validated against ground station data collected at ten different sites in and around the city. Validation is carried out independently for clear, cloudy, and overcast sky conditions. Results indicate that the uWRF-solar model can forecast solar irradiance considerably well for the global horizontal irradiance (GHI) with an R2 value of 0.93 for clear sky conditions, 0.61 for cloudy sky conditions, and finally, 0.39 for overcast conditions. Results are further used to directly forecast solar power production in the region of interest, where evaluations of generation potential are done at the city scale. Outputs show a gradient of power generation produced by the potential available solar energy on the entire uWRF-solar grid. In total, the city has a city photovoltaic (PV) potential of 118 kWh/day/m2 and 3.65 MWh/month/m2.

References

References
1.
Brancucci Martinez-Anido
,
C.
,
Botor
,
B.
,
Florita
,
A. R.
,
Draxl
,
C.
,
Lu
,
S.
,
Hamann
,
H. F.
, and
Hodge
,
B. M.
,
2016
, “
The Value of Day-Ahead Solar Power Forecasting Improvement
,”
Sol. Energy
,
129
, pp.
192
203
.
2.
Yang
,
D.
,
Kleissl
,
J.
,
Gueymard
,
C. A.
,
Pedro
,
H. T. C.
, and
Coimbra
,
C. F. M.
,
2018
, “
History and Trends in Solar Irradiance and PV Power Forecasting: A Preliminary Assessment and Review Using Text Mining
,”
Sol. Energy
,
168
, pp.
60
101
.
3.
Paulescu
,
M.
,
Paulescu
,
E.
,
Gravila
,
P.
, and
Badescu
,
V.
,
2013
,
Weather Modeling and Forecasting of PV Systems Operation
, Vol.
103
,
Green Energy Technology
, Springer, London.
4.
Sengupta
,
M.
,
Habte
,
A.
,
Gueymard
,
C.
,
Wilbert
,
S.
, and
Renne
,
D.
,
2017
, “
Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-5D00-68886
.
5.
Descombes
,
G.
,
Auligné
,
T.
,
Lin
,
H.-C.
,
Xu
,
D.
,
Schwartz
,
C.
, and
Vandenberghe
,
F.
,
2014
, “
Multi-Sensor Advection Diffusion NowCast (MADCast) for Cloud Analysis and Short-Term Prediction
,” National Center for Atmospheric Researcher, Boulder, CO, Technical Report No.
NCAR/TN-509+STR
.
6.
Perez
,
R.
,
Lorenz
,
E.
,
Pelland
,
S.
,
Beauharnois
,
M.
,
Van Knowe
,
G.
,
Hemker
,
K.
,
Heinemann
,
D.
,
Remund
,
J.
,
Müller
,
S. C.
,
Traunmüller
,
W.
,
Steinmauer
,
G.
,
Pozo
,
D.
,
Ruiz-Arias
,
J. A.
,
Lara-Fanego
,
V.
,
Ramirez-Santigosa
,
L.
,
Gaston-Romero
,
M.
, and
Pomares
,
L. M.
,
2013
, “
Comparison of Numerical Weather Prediction Solar Irradiance Forecasts in the US, Canada and Europe
,”
Sol. Energy
,
94
, pp.
305
326
.
7.
Skamarock
,
W. C.
,
Klemp
,
J. B.
,
Dudhi
,
J.
,
Gill
,
D. O.
,
Barker
,
D. M.
,
Duda
,
M. G.
,
Huang
,
X.-Y.
,
Wang
,
W.
, and
Powers
,
J. G.
,
2008
, “
A Description of the Advanced Research WRF Version 3
,” National Center for Atmospheric Research, Boulder, CO, Technical Report No.
NCAR/TN-475+STR
.
8.
Lara-Fanego
,
V.
,
Ruiz-Arias
,
J. A.
,
Pozo-Vázquez
,
D.
,
Santos-Alamillos
,
F. J.
, and
Tovar-Pescador
,
J.
,
2012
, “
Evaluation of the WRF Model Solar Irradiance Forecasts in Andalusia (Southern Spain)
,”
Sol. Energy
,
86
(
8
), pp.
2200
2217
.
9.
Ruiz-Arias
,
J. A.
,
Dudhia
,
J.
,
Santos-Alamillos
,
F. J.
, and
Pozo-Vázquez
,
D.
,
2013
, “
Surface Clear-Sky Shortwave Radiative Closure Intercomparisons in the Weather Research and Forecasting Model
,”
J. Geophys. Res. Atmos.
,
118
(
17
), pp.
9901
9913
.
10.
Aryaputera
,
A. W.
,
Yang
,
D.
, and
Walsh
,
W. M.
,
2015
, “
Day-Ahead Solar Irradiance Forecasting in a Tropical Environment
,”
ASME J. Sol. Energy Eng.
,
137
(
5
), p.
051009
.
11.
Fountoukis
,
C.
,
Martín-Pomares
,
L.
,
Perez-Astudillo
,
D.
,
Bachour
,
D.
, and
Gladich
,
I.
,
2018
, “
Simulating Global Horizontal Irradiance in the Arabian Peninsula: Sensitivity to Explicit Treatment of Aerosols
,”
Sol. Energy
,
163
, pp.
347
355
.
12.
Jimenez
,
P. A.
,
Hacker
,
J. P.
,
Dudhia
,
J.
,
Haupt
,
S. E.
,
Ruiz-Arias
,
J. A.
,
Gueymard
,
C. A.
,
Thompson
,
G.
,
Eidhammer
,
T.
, and
Deng
,
A.
,
2016
, “
WRF-SOLAR: Description and Clear-Sky Assessment of an Augmented NWP Model for Solar Power Prediction
,”
Bull. Am. Meteorol. Soc.
,
97
(
7
), pp.
1249
1264
.
13.
Martilli
,
A.
,
2002
, “
Numerical Study of Urban Impact on Boundary Layer Structure: Sensitivity to Wind Speed, Urban Morphology, and Rural Soil Moisture
,”
J. Appl. Meteorol.
,
41
(
12
), pp.
1247
1266
.
14.
Chen
,
F.
,
Kusaka
,
H.
,
Bornstein
,
R.
,
Ching
,
J.
,
Grimmond
,
C. S. B.
,
Grossman-Clarke
,
S.
,
Loridan
,
T.
,
Manning
,
K. W.
,
Martilli
,
A.
,
Miao
,
S.
,
Sailor
,
D.
,
Salamanca
,
F. P.
,
Taha
,
H.
,
Tewari
,
M.
,
Wang
,
X.
,
Wyszogrodzki
,
A. A.
, and
Zhang
,
C.
,
2011
, “
The Integrated WRF/Urban Modelling System: Development, Evaluation, and Applications to Urban Environmental Problems
,”
Int. J. Climatol.
,
31
(
2
), pp.
273
288
.
15.
Martilli
,
A.
,
Clappier
,
A.
, and
Rotach
,
M. W.
,
2002
, “
An Urban Surface Exchange Parameterisation for Mesoscale Models
,”
Boundary-Layer Meteorol.
,
104
(
2
), pp.
261
304
.
16.
Salamanca
,
F.
,
Krpo
,
A.
,
Martilli
,
A.
, and
Clappier
,
A.
,
2010
, “
A New Building Energy Model Coupled With an Urban Canopy Parameterization for Urban Climate Simulations—Part I: Formulation, Verification, and Sensitivity Analysis of the Model
,”
Theor. Appl. Climatol.
,
99
(
3–4
), pp.
331
344
.
17.
Ortiz
,
L. E.
,
Gonzalez
,
J. E.
,
Wu
,
W.
,
Schoonen
,
M.
,
Tongue
,
J.
, and
Bornstein
,
R.
,
2018
, “
New York City Impacts on a Regional Heat Wave
,”
J. Appl. Meteorol. Climatol.
,
57
(
4
), pp.
837
851
.
18.
Gutiérrez
,
E.
,
González
,
J. E.
,
Bornstein
,
R.
,
Arend
,
M.
, and
Martilli
,
A.
,
2013
, “
A New Modeling Approach to Forecast Building Energy Demands During Extreme Heat Events in Complex Cities
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), pp.
40906
40907
.
19.
Wong
,
K. V.
,
Paddon
,
A.
, and
Jimenez
,
A.
,
2013
, “
Review of World Urban Heat Islands: Many Linked to Increased Mortality
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
022101
.
20.
Ruiz-Arias
,
J. A.
,
Dudhia
,
J.
, and
Gueymard
,
C. A.
,
2014
, “
A Simple Parameterization of the Short-Wave Aerosol Optical Properties for Surface Direct and Diffuse Irradiances Assessment in a Numerical Weather Model
,”
Geosci. Model Dev.
,
7
(
3
), pp.
1159
1174
.
21.
Thompson
,
G.
, and
Eidhammer
,
T.
,
2014
, “
A Study of Aerosol Impacts on Clouds and Precipitation Development in a Large Winter Cyclone
,”
J. Atmos. Sci.
,
71
(10), pp. 3636–3658.
22.
Ginoux
,
P.
,
Chin
,
M.
,
Tegen
,
I.
,
Prospero
,
J. M.
,
Holben
,
B.
,
Dubovik
,
O.
, and
Lin
,
S. J.
,
2001
, “
Sources and Distributions of Dust Aerosols Simulated With the GOCART Model
,”
J. Geophys. Res. Atmos.
,
106
(D17), pp.
20255
20273
.
23.
Ortiz
,
L. E.
,
Gonzalez
,
J. E.
,
Gutierrez
,
E.
, and
Arend
,
M.
,
2016
, “
Forecasting Building Energy Demands With a Coupled Weather-Building Energy Model in a Dense Urban Environment
,”
ASME J. Sol. Energy Eng.
,
139
(
1
), p.
011002
.
24.
Tewari
,
M.
,
Chen
,
F.
,
Wang
,
W.
,
Dudhia
,
J.
,
LeMone
,
M. A.
,
Mitchell
,
K.
,
Ek
,
M.
,
Gayno
,
G.
,
Wegiel
,
J.
, and
Cuenca
,
R. H.
,
2004
, “
Implementation and Verification of the Unified Noah Land Surface Model in the WRF Model
,”
20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction
, Seattle, WA, Jan 10–15, pp. 11–15.
25.
Iacono
,
M. J.
,
Delamere
,
J. S.
,
Mlawer
,
E. J.
,
Shephard
,
M. W.
,
Clough
,
S. A.
, and
Collins
,
W. D.
,
2008
, “
Radiative Forcing by Long-Lived Greenhouse Gases: Calculations With the AER Radiative Transfer Models
,”
J. Geophys. Res. Atmos.
,
113
(
13
), pp.
2
9
.
26.
Janjić
,
Z. I.
,
1994
, “
The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes
,”
Mon. Weather Rev.
,
122
(
5
), pp.
927
945
.
27.
Zhang
,
J.
,
Florita
,
A.
,
Hodge
,
B.-M.
,
Lu
,
S.
,
Hamann
,
H. F.
,
Banunarayanan
,
V.
, and
Brockway
,
A. M.
,
2015
, “
A Suite of Metrics for Assessing the Performance of Solar Power Forecasting
,”
Sol. Energy
,
111
, pp.
157
175
.
28.
Reno
,
M. J.
, and
Hansen
,
C. W.
,
2016
, “
Identification of Periods of Clear Sky Irradiance in Time Series of GHI Measurements
,”
Renewable Energy
,
90
, pp.
520
531
.
29.
Holmgren
,
W. F.
,
Andrews
,
R. W.
,
Lorenzo
,
A. T.
, and
Stein
,
J. S.
,
2015
, “
PVLIB Python
,”
IEEE 42nd Photovoltaic Specialist Conference
(
PVSC
), New Orleans, LA, June 14–19, pp. 3425–3430.
30.
Skoplaki
,
E.
, and
Palyvos
,
J. A.
,
2009
, “
On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations
,”
Sol. Energy
,
83
(
5
), pp.
614
624
.
31.
Liu
,
B. Y. H.
, and
Jordan
,
R. C.
,
1963
, “
A Rational Procedure for Predicting the Long-Term Average Performance of Flat-Plate Solar-Energy Collectors
,”
Sol. Energy
,
7
(
2
), pp.
53
74
.
32.
Mattei
,
M.
,
Notton
,
G.
,
Cristofari
,
C.
,
Muselli
,
M.
, and
Poggi
,
P.
,
2006
, “
Calculation of the Polycrystalline PV Module Temperature Using a Simple Method of Energy Balance
,”
Renewable Energy
,
31
(
4
), pp.
553
567
.
33.
Evans
,
D. L.
,
1981
, “
Simplified Method for Predicting Photovoltaic Array Output
,”
Sol. Energy
,
27
(
6
), pp.
555
560
.
34.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Solar Engineering of Thermal Processes
,
3rd ed.
,
Wiley
, Hoboken, NJ, p.
166
.
You do not currently have access to this content.