When hydrogen is produced from a biomass or coal gasifier, it is necessary to purify it from syngas streams containing components such as CO, CO2, N2, CH4, and other products. Therefore, a challenge related to hydrogen purification is the development of hydrogen-selective membranes that can operate at elevated temperatures and pressures, provide high fluxes, long operational lifetime, and resistance to poisoning while still maintaining reasonable cost. Palladium-based membranes have been shown to be well suited for these types of high-temperature applications and have been widely utilized for hydrogen separation. Palladium's unique ability to absorb a large quantity of hydrogen can also be applied in various clean energy technologies, like hydrogen fuel cells. In this paper, a fully analytical interatomic embedded atom method (EAM) potential for the Pd-H system has been developed, that is easily extendable to ternary Palladium-based hydride systems, such as Pd-Cu-H and Pd-Ag-H. The new potential has fewer fitting parameters than previously developed EAM Pd-H potentials and is able to accurately predict the cohesive energy, lattice constant, bulk modulus, elastic constants, melting temperature, and the stable Pd-H structures in molecular dynamics (MD) simulations with various hydrogen concentrations. The EAM potential also well predicts the miscibility gap, the segregation of the palladium hydride system into dilute (α), and concentrated (β) phases.

References

References
1.
Nelin
,
G.
,
1971
, “
A Neutron Diffraction Study of Palladium Hydride
,”
Phys. Status Solidi B
,
45
(
2
), pp.
527
536
.
2.
Caputo
,
R.
, and
Alavi
,
A.
,
2003
, “
Where Do the H Atoms Reside in PdH x Systems
,”
Mol. Phys.
,
101
(
11
), pp.
1781
1787
.
3.
Manchester
,
F. D.
,
San-Martin
,
A.
, and
Pitre
,
J. M.
,
1994
, “
The H-Pd (Hydrogen Palladium) System
,”
J. Phase Equilib.
,
15
(
1
), pp.
62
83
.
4.
Zhou
,
X. W.
,
Zimmerman
,
J. A.
,
Wong
,
B. M.
, and
Hoyt
,
J. J.
,
2008
, “
An Embedded-Atom Method Interatomic Potential for Pd-H Alloy
,”
J. Mater.
,
23
(
3
), pp.
704
718
.
5.
Zimmerman
,
J.
,
Zhou
,
X.
,
Hale
,
M.
,
Wong
,
B. M.
,
Zimmerman
,
J. A.
, and
Zhou
,
X. W.
,
2007
, “
Development of an Inter-Atomic Potential for the Pd-H Binary System
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2007-5976
.https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2007/075976.pdf
6.
Hale
,
L. M.
,
Wong
,
B. M.
,
Zimmerman
,
J. A.
, and
Zhou
,
X. W.
,
2013
, “
Atomistic Potentials for Palladium–Silver Hydrides
,”
Modell. Simul. Mater. Sci. Eng.
,
21
(
4
), p.
45005
.http://iopscience.iop.org/article/10.1088/0965-0393/21/4/045005
7.
Hsu
,
D. K.
, and
Leisure
,
R. G.
,
1979
, “
Elastic Constants of Palladium and β Phase Palladium Hydride Between 4 and 300 K
,”
Phys. Rev. B
,
20
(
4
), p.
1339
.
8.
Dong
,
W.
,
Ledentu
,
V.
,
Sautet
,
P.
,
Eichler
,
A.
, and
Hafner
,
J.
,
1998
, “
Hydrogen Adsorption on Palladium: A Comparative Theoretical Study of Different Surfaces
,”
Surf. Sci.
,
411
(
1–2
), pp.
123
136
.https://www.sciencedirect.com/science/article/pii/S0039602898003549
9.
Goltsova
,
M. V.
,
Artemenko
,
Y. A.
, and
Zaitsev
,
V. I.
,
1999
, “
Kinetics and Morphology of the Reverse β/α Hydride Transformation in Thermodynamically Open Pd-H System
,”
J. Alloys Compd.
,
293–295
, pp.
379
384
.
10.
Lasser
,
R.
,
1989
,
Tritium and Helium-3 in Metals
, Vol.
9
,
Springer Verlag
,
Berlin
.
11.
Alefeld
,
G.
, and
Völkl
,
J.
,
1978
,
Hydrogen in Metals
, Vol.
1
,
Springer-Verlag
,
Berlin
.
12.
Alefeld
,
G.
, and
Völkl
,
J.
,
1978
,
Hydrogen in Metals
, Vol.
2
,
Springer-Verlag
,
Berlin
.
13.
Muetterties
,
E. L.
,
1971
,
Transition Metal Hydrides
,
Marcel Dekker
,
New York
.
14.
Siegel
,
B.
,
Libowitz
,
G. G.
,
Libowitz
,
G. G.
,
Mueller
,
W. M.
, and
Blackledge
,
J. P.
,
1968
,
Metal Hydrides
,
Academic Press
,
New York
.
15.
Fukai
,
Y.
,
1993
,
The Metal-Hydrogen System
, Vol.
21
,
Springer-Verlag
,
Berlin
.
16.
Povel
,
R.
,
Feucht
,
K.
,
Gelse
,
W.
, and
Withalm
,
G.
,
1989
, “
Hydrogen Fuel for Motorcars
,”
Interdiscip. Sci. Rev.
,
14
(
4
), p.
365
.
17.
Leyko
,
A. B.
, and
Ashwani
,
K. G.
,
2013
, “
Temperature and Pressure Effects on Hydrogen Separation From Syngas
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
034502
.
18.
Knapton
,
A. G.
,
1977
, “
Palladium Alloys for Hydrogen Diffusion Membranes
,”
Platinum Met.
,
21
, pp.
44
50
.https://pdfs.semanticscholar.org/ad97/e592b7172231570bd8b7f71f4c52064c6cf1.pdf
19.
Wolf
,
R. J.
,
Lee
,
M. W.
,
Davis
,
R. C.
,
Fay
,
P. J.
, and
Ray
,
J. R.
,
1993
, “
Pressure–Composition Isotherms for Palladium Hydride
,”
Phys. Rev. B
,
48
(
17
), p.
12415
.
20.
Foils
,
S. M.
, and
Hoyt
,
J. J.
,
2001
, “
Computer Simulation of Bubble Growth in Metals Due to He
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2001-0661
.https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2001/010661.pdf
21.
Park
,
Y. H.
, and
Hijazi
,
I. A.
,
2017
, “
Development of Analytical Interatomic Potential for Palladium-Hydride
,”
J. Mol. Model.
,
23
(
4
), p.
108
.
22.
Park
,
Y. H.
, and
Hijazi
,
I. A.
,
2017
, “
EAM Potentials for Hydrogen Storage Application
,”
ASME
Paper No. PVP2017-65845.
23.
Fuller
,
R.
,
2018
, “
Improved Embedded Atom Method Potentials for the PdAgH System
,”
M.S. thesis
, Marshall University, Huntington, WV.https://mds.marshall.edu/etd/1124
24.
Daw
,
M. S.
, and
Baskes
,
M. I.
,
1983
, “
Semiemprical, quantum Mechanical Calculation of Hydrogen Embrittlement in Metals
,”
Phys. Rev. Lett.
,
50
(
17
), p.
1285
.
25.
Hijazi
,
I. A.
, and
Park
,
Y. H.
,
2009
, “
Consistent Analytic Embedded Atom Potential for Face-Centered Cubic Metals and Alloys
,”
J. Matter. Sci. Technol.
,
25
, pp.
835
846
.http://www.jmst.org/CN/Y2009/V25/I06/835
26.
Park
,
Y. H.
, and
Hijazi
,
I. A.
,
2011
, “
Simple Analytic Embedded Atom Potential for FCC Materials
,”
Int. J. Microstruct. Mater. Prop.
,
6
(
5
), pp.
378
396
.
27.
Hijazi
,
I. A.
, and
Park
,
Y. H.
,
2010
, “
Structure of Pure Metallic Nanoclusters: Monte Carlo Simulation and Ab Initio Study
,”
Eur. Phys. J. D.
,
59
(
2
), p.
215
.
28.
Hijazi
,
I. A.
, and
Park
,
Y. H.
,
2012
, “
Critical Size of Transitional Copper Clusters for Ground State Structure Determination: Empirical and Ab Initio Study
,”
Mol. Simul.
,
38
(
3
), p.
241
.
29.
Hijazi
,
I. A.
, and
Park
,
Y. H.
,
2013
, “
Structural, Electronic and Magnetic Properties of Pure Metallic and Bimetallic Nanoclusters: Empirical and Density Functional Studies
,”
Mol. Simul.
,
38
(
6
), p.
505
.
30.
Rose
,
J. H.
,
Smith
,
J. R.
,
Guinea
,
F.
, and
Ferrante
,
J.
,
1984
, “
Universal Features of the Equation of State of Metals
,”
Phys. Rev. B.
,
29
(
6
), p.
2963
.
31.
Puska
,
J.
,
Nieminen
,
R. M.
, and
Manninen
,
M.
,
1981
, “
Atoms Embedded in an Electron Gas: Immersion Energies
,”
Phys. Rev. B.
,
24
(
6
), pp.
3037
3047
.
32.
Schwarz
,
R. B.
,
Bach
,
H. T.
,
Harms
,
U.
, and
Tuggle
,
D.
,
2005
, “
Elastic Properties of Pd–Hydrogen, Pd–Deuterium, and Pd–Tritium Single Crystals
,”
Acta Mater.
,
53
(
3
), pp.
569
580
.
33.
Sakamoto
,
Y.
,
Yuwasa
,
K.
, and
Hirayama
,
K.
,
1982
, “
X-ray Investigation of the Absorption of Hydrogen by Several Palladium and Nickel Solid Solution Alloys
,”
J. Less-Comm. Met.
,
88
(
1
), p.
115
.
34.
Antonov
,
V. E.
,
2002
, “
Phase Transformations, Crystal and Magnetic Structures of High-Pressure Hydrides of d-Metals
,”
J. Alloys Compd.
,
330–332
, pp.
110
116
.
35.
Zhong
,
W.
,
Cai
,
Y.
, and
Tomanek
,
D.
,
1993
, “
Computer Simulation of Hydrogen Embrittlement in Metals
,”
Nature
,
362
(
6419
), pp.
435
437
.
36.
Ilawe
,
V. N.
,
Zimmerman
,
A. J.
, and
Wong
,
B. M.
,
2015
, “
Breaking Badly: DFT-D2 Gives Sizeable Errors for Tensile Strengths in Palladium-Hydride Solids
,”
J. Chem. Theory Comput.
,
11
, pp.
5426
5435
.
37.
Jacobs
,
M. H. G.
, and
Oonk
,
H. A. J.
,
2006
, “
The Calculation of Ternary Miscibility Gaps Using the Linear Contributions Method: Problems, benchmark Systems and an Application to (K, Li, Na) Br
,”
Calphad
,
30
(
2
), pp.
185
190
.
You do not currently have access to this content.