With the increasing demand for clean energy, offshore wind power is developing rapidly. But compared to onshore situation, the working environment at sea is very complicated. In order to ensure the stable operation of generators, higher requirements are put forward for the capability of offshore wind power structures to resist wind and waves. This paper proposes a new combined vibration suppressing device, which can be used to suppress the swaying vibration of offshore floating wind generator under waves. The floating wind power station tower was modeled, the wave force and the torsion force of the tower were analyzed, and the fluid structure interaction numerical simulation was carried out. The calculation results demonstrate that the amplitudes of the tower torsion angle have been attenuated by 8%, 11%, and 17% with different vibration suppression devices which are tuned mass damper (TMD), tuned liquid damper (TLD), and a tuned immersed mass and liquid damper. In this case, the new combined device has the best vibration suppression performance. It is validated that compared to the other two single vibration suppression devices, the new combined device has better vibration suppression capacity, and a new way is provided to design the vibration suppression device for offshore floating wind power station.

References

References
1.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
2.
He
,
Z. X.
,
Xu
,
S. C.
, and
Shen
,
W. X.
,
2016
, “
Review of Factors Affecting China's Offshore Wind Power Industry
,”
Renewable Sustainable Energy Rev.
,
56
(
C
), pp.
1372
1386
.
3.
Zhao
,
X.
, and
Ren
,
L.
,
2015
, “
Focus on the Development of Offshore Wind Power in China: Has the Golden Period Come?
,”
Renewable Energy.
,
81
(
C
), pp.
644
657
.
4.
Ashwani
,
K. G.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
.
5.
Anderson
,
M.
, and
Beyene
,
A.
,
2016
, “
Integrated Resource Mapping of Wave and Wind Energy
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
011203
.
6.
Liu
,
B.
,
He
,
Z. J.
, and
Jin
,
H.
,
2016
, “
Wind Power Status and Development Trends
,”
J. Northeast Dianli Univ.
,
36
(
2
), pp.
7
13
.
7.
Perveen
,
R.
,
Kishor
,
N.
, and
Mohanty
,
S. R.
,
2014
, “
Off-Shore Wind Farm Development: Present Status and Challenges
,”
Renewable Sustainable Energy Rev.
,
29
(
7
), pp.
780
792
.
8.
Duan
,
L.
, and
Li
,
Y.
,
2016
, “
Progress of Recent Research and Development in Floating Offshore Wind Turbines
,”
Sci. Sin. Phys. Mech. Astron.
,
46
(
12
), p.
124703
(in Chinese).
9.
Rodriguez
,
S. N.
, and
Jaworski
,
J. W.
,
2017
, “
Toward Identifying Aeroelastic Mechanisms in Near-Wake Instabilities of Floating Offshore Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051203
.
10.
Jin
,
X.
,
Zhong
,
X.
,
He
,
Y. L.
,
Du
,
J.
, and
Li
,
Q. M.
,
2013
, “
Floating Characteristics' Impact on Vibration of Wind Turbine
,”
J. Vib. Shock
,
32
(
15
), pp.
26
31
(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZDCJ201315007.htm
11.
Lin
,
L.
,
Wang
,
K.
, and
Dracos
,
V.
,
2018
, “
Detecting Wake Performance of Floating Offshore Wind Turbine
,”
Ocean Eng.
,
156
, pp.
263
276
.
12.
Kandasamy
,
R.
,
Cui
,
F.
,
Townsend
,
N.
,
Foo
,
C. C.
,
Guo
,
J. Y.
,
Shenoi
,
A.
, and
Xiong
,
Y. P.
,
2016
, “
A Review of Vibration Control Methods for Marine Offshore Structures
,”
Ocean Eng.
,
127
, pp.
279
297
.
13.
Lackner
,
M. A.
, and
Rotea
,
M. A.
,
2011
, “
Passive Structural Control of Offshore Wind Turbines
,”
Wind Energy.
,
14
(
3
), pp.
373
388
.
14.
Jaksic
,
V.
,
Wright
,
C. S.
,
Murphy
,
J.
,
Afeef
,
C.
,
Ali
,
S. F.
,
Mandic
,
D. P.
, and
Pakrashi
,
V.
,
2015
, “
Dynamic Response Mitigation of Floating Wind Turbine Platforms Using Tuned Liquid Column Dampers
,”
Philos. Trans. R. Soc., A
,
373
(
2035
), p.
20140079
.
15.
Stewart
,
G. M.
, and
Lackner
,
M. A.
,
2014
, “
The Impact of Passive Tuned Mass Dampers and Wind–Wave Misalignment on Offshore Wind Turbine Loads
,”
Eng. Struct.
,
73
, pp.
54
61
.
16.
Yang
,
J. J.
,
He
,
E. M.
, and
Hu
,
Y. Q.
,
2018
, “
Structural Control for an Offshore Wind Turbine With a Tuned Mass Damper in Floating Platform
,”
International Conference on Computer, Electronic Information and Communications
(
CEIC 2018
), Sanya, China, May 27–28, pp. 390-394.
17.
Roderick
,
C.
,
2012
, “
Vibration Reduction of Offshore Wind Turbines Using Tuned Liquid Column Dampers
,”
Master thesis
, University of Massachusetts, Amherst, MA.https://pdfs.semanticscholar.org/635c/67c32795a10abd3f479d9aa30af399b4761f.pdf
18.
Wang
,
Z. X.
,
Wang
,
B.
,
Zhong
,
J. W.
, and
Li
,
D. C.
,
2011
, “
Research and Application of Tuned Liquid and Mass Damper (TLMD)
,”
Bridge Constr.
,
28
(
1
), pp.
10
13
(in Chinese).
19.
Guo
,
T.
,
Guan
,
Z. C.
,
Sun
,
G. P.
, and
Li
,
G. J.
,
2016
, “
Fluid-Structure Interaction Analysis of Vibration Suppression by Tuned Oscillator-Liquid Combined System
,”
J. Xi'an Jiaotong Univ.
,
50
(
1
), pp.
28
33
.
20.
Xu
,
X.
,
Guo
,
T.
,
Li
,
G. J.
,
Sun
,
G. P.
,
Shang
,
B. B.
, and
Guan
,
Z. C.
,
2018
, “
A Combined System of Tuned Immersion Mass and Sloshing Liquid for Vibration Suppression: Optimization and Characterization
,”
J. Fluids Struct.
,
76
, pp.
396
410
.
21.
Skaare
,
B.
,
Nielsen
,
F. G.
,
Hanson
,
T. D.
,
Yttervik
,
R.
,
Havmøller
,
O.
, and
Rekdal
,
A.
,
2015
, “
Analysis of Measurements and Simulations From the Hywind Demo Floating Wind Turbine
,”
Wind Energy.
,
18
(
6
), pp.
1105
1122
.
22.
Luo
,
N.
,
Pacheco
,
L.
,
Vidal Seguí
,
Y.
, and
Li
,
H.
,
2012
, “
Smart Structural Control Strategies for Offshore Wind Power Generation With Floating Wind Turbines
,”
International Conference on Renewable Energies and Power Quality
(
ICREPQ′™12
), Santiago de Compostela, Spain, Mar. 28–30, pp. 1200-1205.https://www.researchgate.net/publication/277196568_Smart_Structural_Control_Strategies_for_Offshore_Wind_Power_Generation_with_Floating_Wind_Turbines
23.
Anderson
,
J. G.
,
Semercigil
,
S. E.
, and
Turan
,
Ö. F.
,
2000
, “
A Standing-Wave Type Sloshing Absorber to Control Transient Oscillations
,”
J. Sound Vib.
,
232
(
5
), pp.
839
856
.
24.
Guo
,
T.
,
Ye
,
Y. H.
, and
Li
,
G. J.
,
2015
, “
On the Key Parameters of an Interior Sloshing Absorber for Vibration Suppression
,”
Int. J. Struct. Stab. Dyn.
,
15
(
1
), p.
1450076
.
You do not currently have access to this content.