Improvement of the aerodynamic performance for cambered airfoils with leading-edge slots is investigated in this work. This concept is proven both computationally and experimentally in recent years. Five design variables of interest are slot's length, slot's width or thickness, inlet angle, exit angle, and the vertical position. The objective is to perform design of experiment and optimization studies on these variables and evaluate the behavior of the objective functions, namely lift and lift over drag ratio (LoD), within the appropriate ranges of the independent variables. Simulations are mainly carried out at the Reynolds number of 1.6 × 106 and the angles of attack (AoA) of 6 deg for NACA 4412 airfoil. However, some of the analyses are repeated at Reynolds number of 3.2 × 106 and AoA of 0 and 8 deg to show the scalability of the results. Results indicate that the proper selection of three of the design variables, i.e., length, inlet angle, and vertical position, can have a significant impact on both lift and LoD, while the other two variables seem less influential. For the combination of the operating conditions and the values of the design variables considered in this investigation, a LoD improvement as large as 11% is observed.

References

References
1.
United States Department of Energy
,
2015
, “
Wind Vision: A New Era for Wind Power in the United States
,” United States Department of Energy, Washington, DC, accessed April 15, 2018, https://www.energy.gov/sites/prod/files/wind_vision_highlights.pdf
2.
Lindboe
,
H. H.
, and
Hethey
,
J.
,
2014
, “
Vindintegration i Danmark
,” Ea Energy Analyses, Copenhagen, Denmark, accessed April 15, 2018, http://www.dkvind.dk/html/nyheder/2014/pdf/041114_rapport.pdf
3.
Hau
,
E.
,
2013
,
Wind Turbines: Fundamentals, Technologies, Application, Economics
,
3rd ed.
,
Springer-Verlag
,
Berlin
.
4.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2018
, “
A Parametric Study on Leading-Edge Slots Used on Wind Turbine Airfoils at Various Angles of Attack
,”
J. Wind Eng. Ind. Aerodyn.
,
175
, pp.
43
52
.
5.
Heathcote
,
D. J.
,
Gursul
,
I.
, and
Cleaver
,
D. J.
,
2016
, “
An Experimental Study of Mini-Tabs for Aerodynamic Load Control
,”
AIAA
Paper No. 2016-0325.
6.
Sareen
,
A. C.
,
Deters
,
R. W.
,
Henry
,
S. P.
, and
Selig
,
M. S.
,
2013
, “
Drag Reduction Using Riblet Film Applied to Airfoils for Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
136
(
2
), p.
021007
.
7.
Troldborg
,
N.
,
Zahle
,
F.
, and
Sorensen
,
N. N.
,
2016
, “
Simulations of Wind Turbine Rotor With Vortex Generators
,”
J. Phys.: Conf. Ser.
,
753
(
2
), p.
022057
.
8.
Mishra
,
N.
,
Gupta
,
A. S.
,
Dawar
,
J.
,
Kumar
,
A.
, and
Mitra
,
S.
,
2018
, “
Numerical and Experimental Study on Performance Enhancement of Darrieus Vertical Axis Wind Turbine With Wingtip Devices
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
121201
.
9.
Arce
,
C.
,
Ragni
,
D.
,
Probsting
,
S.
, and
Scarano
,
F.
,
2015
, “
Flow Field Around a Serrated Trailing Edge at Incidence
,”
AIAA
Paper No. 2015-0991.
10.
van Dam
,
C. P.
,
Yen
,
D. T.
, and
Vijgen
,
P. M. H. W.
,
1999
, “
Gurney Flap Experiments on Airfoil and Wings
,”
J. Aircr.
,
36
(
2
), pp.
484
486
.
11.
Schramm
,
M.
,
Stoevesandt
,
B.
, and
Peinke
,
J.
,
2016
, “
Simulation and Optimization of an Airfoil With Leading Edge Slat
,”
J. Phys.: Conf. Ser.
,
753
, p.
022052
.
12.
Xie
,
Y.
,
Chen
,
J.
,
Qu
,
H.
,
Xie
,
G.
,
Zhang
,
D.
, and
Moshfeghi
,
M.
,
2013
, “
Numerical and Experimental Investigation on the Flow Separation Control of S809 Airfoil With Slot
,”
Math. Probl. Eng.
,
2013
, p.
1
.
13.
Weber
,
J. M.
,
2012
, “
Passive Flow Control Method for Mitigation of Unsteady Load Excursions on a Wind Turbine Blade
,” M.Sc. thesis, Texas A&M University, College Station, TX.
14.
Belamadi
,
R.
,
Djemili
,
A.
,
Ilinca
,
A.
, and
Mdouki
,
R.
,
2016
, “
Aerodynamic Performance Analysis of Slotted Airfoils for Application to Wind Turbine Blades
,”
J. Wind Eng. Ind. Aerodyn.
,
151
, pp.
79
99
.
15.
Rong
,
R.
,
Cui
,
K.
,
Li
,
Z.
, and
Wu
,
Z.
,
2015
, “
Numerical Study of Centrifugal Fan With Slots in Blade Surface
,”
Procedia Eng.
,
126
, pp.
588
591
.
16.
Ibrahim
,
M. S.
,
Alsultan
,
A.
,
Shen
,
S.
, and
Amano
,
R. S.
,
2015
, “
Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051205
.
17.
Alsultan
,
A.
,
2015
, “
Computational and Experimental Study on Innovative Horizontal-Axis Wind Turbine Blade Designs
,” M.Sc. thesis, University of Wisconsin-Milwaukee, Milwaukee, WI.
18.
Jackson
,
R. S.
, and
Amano
,
R. S.
,
2017
, “
Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051207
.
19.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2017
, “
Improvement of Aerodynamic Performance of Cambered Airfoils Using Leading-Edge Slots
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051204
.
20.
Burton
,
T.
,
Jenkins
,
N.
,
Sharpe
,
D.
, and
Bossanyi
,
E.
,
2011
,
Wind Energy Handbook
,
Wiley
,
Chichester, UK
.
21.
Beyhaghi
,
S.
,
2017
, “
Investigation of a Novel Turbulence Model and Using Leading-Edge Slots for Improving the Aerodynamic Performance of Airfoils and Wind Turbines
,” Ph.D. dissertation, University of Wisconsin-Milwaukee, Milwaukee, WI.
22.
Myers
,
R. H.
,
1971
,
Response Surface Methodology
,
Allyn and Bacon
,
Boston, MA
.
23.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Am. Stat. Assoc.
,
21
(
2
), pp.
239
245
.https://www.jstor.org/stable/1268522
24.
Iman
,
R. L.
,
Helton
,
J. C.
, and
Campbell
,
J. E.
,
1981
, “
An Approach to Sensitivity Analysis of Computer Models—Part 1: Introduction, Input Variable Selection and Preliminary Variable Assessment
,”
J. Qual. Technol.
,
13
(
3
), pp.
174
183
.
25.
Tang
,
B.
,
1993
, “
Orthogonal Array-Based Latin Hypercubes
,”
J. Am. Stat. Assoc.
,
88
(
424
), pp.
1392
1397
.
26.
Red Cedar Technology
,
2017
, “
SHERPA—An Efficient and Robust Optimization/Search Algorithm
,” Red Cedar Technology, East Lansing, MI, Report No. WP-1023.
27.
Maurya
,
S. K.
,
Tourani
,
C.
,
Prabhakar
,
A.
, and
Kannan
,
V. K.
,
2014
, “
Gas Turbine Combustor Design Optimization for Emission Reduction Using STAR-CCM+
,”
16th Annual CFD Symposium
, Bangalore, India, Aug. 11–12.
28.
Ngo
,
L. C.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2015
, “
Numerical Modelling and Optimization of Natural Convection Heat Loss Suppression in a Solar Cavity Receiver With Plate Fins
,”
Renewable Energy
,
74
, pp.
95
105
.
29.
Chase
,
N.
,
Rademacher
,
M.
,
Goodman
,
E.
,
Averill
,
R.
, and
Sidhu
,
R.
,
2015
, “
A Benchmark Study of Optimization Search Algorithms
,” Red Cedar Technology, East Lansing, MI,
Report No. BMK-3022
.
You do not currently have access to this content.