This study investigates the performance of microjets for load reduction on the NREL-5 MW wind turbine and identifies optimal system parameters. Microjets provide blowing normal to the blade surface and can rapidly increase or decrease lift on a blade section, enabling a wind turbine to respond to local, short-term changes in wind condition. As wind turbine rotors become larger, control methods that act on a single blade or blade section are increasingly necessary to reduce critical fatigue and extreme loads. However, microjets require power to operate, and thus, it is crucial that the fatigue reduction justifies any energy input to the system. To examine the potential for fatigue reduction of a range of potential microjet system configurations, a blade element momentum (BEM) code and a flow energy solver were used to estimate the energy input and the change in primary fatigue metrics. A parametric analysis was conducted to identify the optimal spanwise position and length of the microjets over a range of air mass flow rates. Both active and passive air supply methods were considered. A passive microjet system applied to the NREL 5-MW rotor produced a 3.7% reduction in the maximum flapwise root bending moment (FRBM). The reduction in the peak bending moment increased to 6.0% with a 5 kPa blower that consumes approximately 0.1% of the turbine output power. The most effective configurations placed microjets between the blade midspan to three-quarters span. Load reduction was achieved for both active and passive modes of air supply to the microjet system.

References

References
1.
Johnson
,
S. J.
,
van Dam
,
C. P.
, and
Berg
,
D. E.
,
2008
, “
Active Load Control Techniques for Wind Turbines
,” Sandia National Labs, Albuquerque, NM, Report No. SAND2008-4809.
2.
Barlas
,
T. K.
, and
van Kuik
,
G. A. M.
,
2010
, “
Review of State of the Art in Smart Rotor Control Research for Wind Turbines
,”
Prog. Aerosp. Sci.
,
46
(
1
), pp.
1
27
.
3.
Blaylock
,
M.
,
Chow
,
R.
,
Cooperman
,
A.
, and
van Dam
,
C. P.
,
2014
, “
Comparison of Pneumatic Jets and Tabs for Active Aerodynamic Load Control
,”
Wind Energy
,
17
(
9
), pp.
1365
1384
.
4.
Maldonado
,
V.
,
Farnsworth
,
J.
,
Gressick
,
W.
, and
Amitay
,
M.
,
2010
, “
Active Control of Flow Separation and Structural Vibrations of Wind Turbine Blades
,”
Wind Energy
,
13
(
2–3
), pp.
221
237
.
5.
Gul
,
M.
,
Uzol
,
O.
, and
Akmandor
,
I. S.
,
2014
, “
An Experimental Study on Active Flow Control Using Synthetic Jet Actuators Over S809 Airfoil
,”
J. Phys.: Conf. Ser.
,
524
(
1
), p.
012101
.
6.
Taylor
,
K.
,
Leong
,
C. M.
, and
Amitay
,
M.
,
2015
, “
Load Control on a Dynamically Pitching Finite Span Wind Turbine Blade Using Synthetic Jets
,”
Wind Energy
,
18
(
10
), pp.
1759
1775
.
7.
Boeije
,
C. S.
,
de Vries
,
H.
,
Cleine
,
I.
,
van Emden
,
E.
,
Zwart
,
G. G. M.
,
Stobbe
,
H.
,
Hirschberg
,
A.
, and
Hoeijmakers
,
H. W. M.
,
2009
, “
Fluidic Load Control for Wind Turbine Blades
,” AIAA Paper No. 2009-684.
8.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2017
, “
Improvement of Aerodynamic Performance of Cambered Airfoils Using Leading-Edge Slots
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051204
.
9.
Kragh
,
K. A.
,
Hansen
,
M. H.
, and
Henriksen
,
L. C.
,
2014
, “
Sensor Comparison Study for Load Alleviating Wind Turbine Pitch Control
,”
Wind Energy
,
17
(
12
), pp.
1891
1904
.
10.
Poisson-Quinton
,
P.
, and
Lepage
,
L.
,
1961
, “
Survey of French Research on the Control of Boundary Layer and Circulation
,”
Boundary Layer and Flow Control
,
G. V.
Lachmann
, ed.,
Pergamon Press
, Oxford, UK.
11.
Davidson
,
I. M.
,
1956
, “
The Jet Flap
,”
Aeronaut. J.
,
60
(
541
), pp.
25
50
.
12.
Malavard
,
L.
,
Poisson-Quinton
,
P.
, and
Jousserandot
,
P.
,
1956
,
Theoretical and Experimental Investigations of Circulation Control
,
Department of Aeronautical Engineering, Princeton University
, Princeton, NJ, Translated by T. M. Berthoff and D. C. Hazen, Report No. 358.
13.
Leopold
,
D.
, and
Krothapalli
,
A.
,
1983
, “
Some Observations on the Aerodynamics of an Airfoil With a Jet Exhausting From the Lower Surface
,”
AIAA
Paper No. 1983-173.
14.
Traub
,
L. W.
,
Miller
,
A. C.
, and
Rediniotis
,
O.
,
2004
, “
Comparisons of a Gurney and Jet-Flap for Hinge-Less Control
,”
J. Aircr.
,
41
(
2
), pp.
420
423
.
15.
Cruz
,
J.
, and
Anders
,
S.
,
2006
, “
Assessment of an Unstructured-Grid Method for Predicting Aerodynamic Performance of Jet Flaps
,”
AIAA
Paper No. 2006-3868.https://arc.aiaa.org/doi/10.2514/6.2006-3868
16.
Heathcote
,
D. J.
,
Al-Battal
,
N.
,
Gursul
,
I.
, and
Cleaver
,
D. J.
,
2015
, “
Control of wing loads by Means of Blowing and Mini-Tabs
,”
European Drag Reduction and Flow Control Meeting
, Cambridge, UK, Mar. 23–26, pp.
1
2
.
17.
Blaylock
,
M.
,
2012
, “
Computational Investigation on the Application of Using Microjets as Active Aerodynamic Load Control for Wind Turbines
,” Ph.D. thesis, University of California, Davis, CA.
18.
Chow
,
R.
, and
van Dam
,
C. P.
,
2006
, “
Unsteady Computational Investigations of Deploying Load Control Microtabs
,”
J. Aircr.
,
43
(
5
), pp.
1458
1469
.
19.
Brunner
,
M. S.
,
2012
, “
Development of a Pneumatic ‘Microjets’ System for Aerodynamic Load Control of Wind Turbine Blades
,” M.S. thesis, University of California, Davis, CA.
20.
Hurley
,
O. F.
,
Chow
,
R.
,
Blaylock
,
M. L.
, and
Van Dam
,
C. P.
,
2016
, “
Blade Element Momentum Based Study for Active and Passive Microjets Systems on the NREL 5-MW Turbine
,”
AIAA
Paper No. 2016-1263.https://arc.aiaa.org/doi/10.2514/6.2016-1263
21.
Barnard
,
J. C.
, and
Wendell
,
L. L.
,
1997
, “
A Simple Method of Estimating Wind Turbine Blade Fatigue at Potential Wind Turbine Sites
,”
ASME J. Sol. Energy Eng.
,
119
(
2
), pp.
174
186
.
22.
Johnson
,
S. J.
,
Baker
,
J. P.
,
van Dam
,
C. P.
, and
Berg
,
D.
,
2010
, “
An Overview of Active Load Control Techniques for Wind Turbines With an Emphasis on Microtabs
,”
Wind Energy
,
13
(
2–3
), pp.
239
253
.
23.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,”
National Renewable Energy Laboratory (NREL)
, Golden, CO, Report No.
NREL/TP-500-38060
.https://www.nrel.gov/docs/fy09osti/38060.pdf
24.
Buhl
,
M.
,
2004
,
WT_Perf User's Guide
,
National Wind Technology Center
,
Golden, CO
.
25.
Moriarty
,
P. J.
, and
Hansen
,
A. C.
,
2004
, “
AeroDyn Theory Manual
,”
National Wind Technology Center
,
Golden, CO
.
26.
Parikh
,
P.
,
2011
, “
Passive Removal of Suction Air for Laminar Flow Control, and Associated Systems and Methods
,” U.S. Patent No. 7,866,609 B2.
27.
Hurley
,
O.
,
2015
, “
Investigation on Implementation of Microjets for Active Aerodynamic Load Control on the NREL 5-MW Reference Turbine Utilizing Active and Passive Methods
,” M.S. thesis, University of California, Davis, CA.
28.
Drela
,
M.
,
2001
, “
XFOIL 6.94 User Guide
,”
Massachusetts Institute of Technology
, Cambridge, MA.
29.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2007
,
Internal Flow: Concepts and Applications
,
Cambridge University Press
,
Cambridge, UK
.
30.
Kratz
,
A. P.
, and
Fellows
,
J. R.
,
1938
,
Pressure Losses Resulting From Changes in Cross-Sectional Area in Air Ducts
,
University of Illinois, Urbana Champaign
,
IL
.
31.
Berg
,
D. E.
,
Wilson
,
D. G.
,
Resor
,
B. R.
,
Barone
,
M. F.
,
Berg
,
J. C.
,
Kota
,
S.
, and
Ervin
,
G.
,
2009
, “
Active Aerodynamic Blade Load Control Impacts on Utility-Scale Wind Turbines
,”
AWEA Windpower 2009
, May 4–7, Chicago, IL, pp.
1
12
.
You do not currently have access to this content.