Icing of wind turbine blades poses a challenge for the wind power industry in cold climate wind farms. It can lead to production losses of more than 10% of the annual energy production. Knowledge of how the production is affected by icing is of importance. Complicating this reality is the fact that even a small amount of uncertainty in the shape of the accreted ice may result in a large amount of uncertainty in the aerodynamic performance metrics. This paper presents a numerical approach using the technique of polynomial chaos expansion (PCE) to quantify icing uncertainty faster than traditional methods. Time-dependent bi-dimensional Reynolds-averaged Navier–Stokes computational fluid dynamics (RANS-CFD) simulations are considered to evaluate the aerodynamic characteristics at the chosen sample points. The boundary conditions are based on three-dimensional simulations of the rotor. This approach is applied to the NREL 5 MW reference wind turbine allowing to estimate the power loss range due to the leading-edge glaze ice, considering a radial section near the tip. The probability distribution function of the power loss is also assessed. The results of the section are nondimensionalized and assumed valid for the other radial sections. A correlation is found allowing to model the load loss with respect to the glaze ice horn height, as well as the corresponding probability distribution. Considering an equal chance for any of the ice profiles, load loss is estimated to be lower than 6.5% for the entire blade in half of the icing cases, while it could be roughly 4–6 times in the most severe icings.

References

1.
Hansson
,
J.
,
Lindvall
,
J.
, and
Byrkjedal
,
Ø.
,
2016
, “
Quantification of Icing Losses in Wind Farms
,” Kjeller Vindteknikk, Stockholm, Sweden, Report No. 2016:299.
2.
Tabatabaei
,
N.
,
Cervantes
,
M. J.
, and
Gantasala
,
S.
,
2018
, “
Wind Turbine Aerodynamic Modelling in Icing Condition: 3D RANS-CFD vs BEM Method
,” Wind Energy, (under review).
3.
Lee
,
S.
, and
Bragg
,
M. B.
,
2003
, “
Investigation of Factors Affecting Iced-Airfoil Aerodynamics
,”
J. Aircr.
,
40
(
3
), pp.
499
508
.
4.
Loeven
,
A.
, and
Bijl
,
H.
,
2008
, “
Airfoil Analysis With Uncertain Geometry Using the Probabilistic Collocation Method
,”
AIAA
Paper No. 2008-2070.
5.
Wu
,
X.
,
Zhang
,
W.
,
Song
,
S.
, and
Ye
,
Z.
,
2018
, “
Sparse Grid-Based Polynomial Chaos Expansion for Aerodynamics of an Airfoil With Uncertainties
,”
Chinese J. Aeronaut.
,
31
(5), pp. 997–1011.
6.
Liu
,
D.
,
Litvinenko
,
A.
,
Schillings
,
C.
, and
Schulz
,
V.
,
2017
, “
Quantification of Airfoil Geometry-Induced Aerodynamic Uncertainties—Comparison of Approaches
,”
SIAM/ASA J. Uncertainty Quantif.
,
5
(
1
), pp.
334
352
.
7.
DeGennaro
,
A. M.
,
2016
, “
Uncertainty Quantification for Airfoil Icing
,” Ph.D. thesis, Princeton University, Princeton, NJ.
8.
Kaintura
,
A.
,
Dhaene
,
T.
, and
Spina
,
D.
,
2018
, “
Review of Polynomial Chaos-Based Methods for Uncertainty Quantification in Modern Integrated Circuits
,”
Electronics
,
7
(
3
), pp. 1–21.https://biblio.ugent.be/publication/8566050
9.
Cunha
,
A.
, Jr
Nasser
,
R.
,
Sampaio
,
R.
,
Lopes
,
H.
, and
Breitman
,
K.
,
2014
, “
Uncertainty Quantification Through the Monte Carlo Method in a Cloud Computing Setting
,”
Comput. Phys. Commun.
,
185
(
5
), pp. 1355–1363.
10.
DeGennaro
,
A. M.
,
Rowley
,
C. W.
, and
Martinelli
,
L.
,
2015
, “
Uncertainty Quantification for Airfoil Icing Using Polynomial Chaos Expansions
,”
J. Aircr.
,
52
(
5
), pp.
1404
1411
.
11.
Saracco
,
P.
, and
Grazia Pia
,
M.
,
2013
, “
An Exact Framework for Uncertainty Quantification in Monte Carlo Simulation
,”
J. Phys. Conf. Ser.
,
513
(
2
), pp. 1–7.
12.
Eldred
,
M.
, and
Burkardt
,
J.
,
2009
, “
Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification
,”
AIAA
Paper No. 2009-976.
13.
Xiu
,
D.
, and
Karniadakis
,
G.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
14.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
,
1988
, “
Gaussian Quadratures and Orthogonal Polynomials
,”
Numerical Recipes in C: The Art of Scientific Computing
, Cambridge University Press, New York, pp.
147
161
.
15.
MathWorks,
2016
, “
MATLAB
,” The MathWorks Inc., Natick, MA.
16.
Germanischer Lloyd Industrial Services
,
2010
, “
Guideline for the Certification of Wind Turbines
,” Germanischer Lloyd Industrial Services, Hamburg, Germany.
17.
Shen
,
W. Z.
,
Hansen
,
M. O. L.
, and
Sørensen
,
J. N.
,
2009
, “
Determination of the Angle of Attack on Rotor Blades
,”
Wind Energy
,
12
(
1
), pp.
91
98
.
18.
Guntur
,
S.
, and
Sørensen
,
N. N.
,
2014
, “
An Evaluation of Several Methods of Determining the Local Angle of Attack on Wind Turbine Blades
,”
J. Phys.: Conf. Ser.
,
555
(
1
), p.
012045
.
19.
Hansen
,
M. O. L.
,
Sørensen
,
N. N.
,
Sørensen
,
J. N.
, and
Michelsen
,
J. A.
,
1998
, “
Extraction of Lift, Drag and Angle of Attack From Computed 3D Viscous Flow Around a Rotating Blade
,”
European Wind Energy Conference
, Dublin, Ireland, Oct. 6–9.
20.
Hansen
,
M. O. L.
, and
Johansen
,
J.
,
2004
, “
Tip Studies Using CFD and Comparison With Tip Loss Models
,”
Wind Energy
,
7
(
4
), pp.
343
356
.
21.
Johansen
,
J.
, and
Sørensen
,
N. N.
,
2004
, “
Aerofoil Characteristics From 3D CFD Rotor Computations
,”
Wind Energy
,
7
(
4
), pp.
283
294
.
22.
Beaugendre
,
H.
,
Morency
,
F.
, and
Habashi
,
W. G.
,
2006
, “
Development of a Second Generation In-Flight Icing Simulation Code
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
378
387
.
23.
Hochart
,
C.
,
Fortin
,
G.
,
Perron
,
J.
, and
Ilinca
,
A.
,
2008
, “
Wind Turbine Performance Under Icing Conditions
,”
Wind Energy
,
11
(
4
), pp.
319
333
.
24.
Papadakis
,
M.
,
Alansatan
,
S.
, and
Wong
,
S.
,
2000
, “
Aerodynamic Characteristics of a Symmetric NACA Section With Simulated Ice Shapes
,”
AIAA
Paper No. 2000-98.
25.
Bai
,
Y.
,
Sun
,
D.
,
Lin
,
J.
,
Kennedy
,
D.
, and
Williams
,
F.
,
2012
, “
Numerical Aerodynamic Simulations of a NACA Airfoil Using CFD With Block-Iterative Coupling and Turbulence Modelling
,”
Int. J. Comput. Fluid Dyn.
,
26
(
2
), pp.
119
132
.
26.
ANSYS
,
2013
, “
ANSYS CFX-Solver Theory Guide Release 15.
0,” ANSYS, Canonsburg, PA.
27.
Ducoin
,
A.
,
Astolfi
,
J. A.
,
Deniset
,
F.
, and
Sigrist
,
J.
,
2009
, “
Computational and Experimental Investigation of Flow Over a Transient Pitching Hydrofoil
,”
Eur. J. Mech. B
,
28
(
6
), pp.
728
743
.
28.
Menter
,
F. R.
,
1992
, “
Improved Two-Equation K-Omega Turbulence Models for Aerodynamic Flows
,”
NASA
Ames Research Center, Moffett Field, CA.https://ntrs.nasa.gov/search.jsp?R=19930013620
29.
Furst
,
J.
,
Straka
,
P.
,
Prihoda
,
J.
, and
Simurda
,
D.
,
2013
, “
Comparison of Several Models of the Laminar/Turbulent Transition
,”
EPJ Web Conf.
,
45
, p.
01032
.
30.
Eggenspieler
,
G.
,
2012
, “
Modelling Laminar-Turbulent Transition Processes
,” ANSYS, Canonsburg, PA.
31.
ANSYS
,
2013
, “
ANSYS CFX-Solver Modeling Guide Release 15.0
,” ANSYS, Canonsburg, PA.
32.
Hosder
,
S.
,
Walters
,
R.
, and
Balch
,
M.
,
2007
, “
Efficient Sampling for Non-Intrusive Polynomial Chaos Applications With Multiple Uncertain Input Variables
,”
AIAA
Paper No. 2007-1939.
You do not currently have access to this content.