An improved diagnostic mass-consistent finite element model (FEM) has been developed to construct 3D wind fields over irregular terrain. Instead of using constant Gauss precision moduli over the whole domain in the existing mass-consistent models, the improved mass-consistent model adopts different Gauss precision moduli based on the terrain topography gradient associated with atmospheric boundary conditions. These terrain sensitive moduli resolve wind flows over large topographical obstacles more accurately than constant Gauss precision moduli. In this study, a terrain following mesh generator is developed based on digital elevation data from the U.S. Geological Survey, and the data linked to the modified mass-consistent FEM model. The improved model is validated and verified using a benchmark study for flow over a semicylinder. The model is then used to re-examine 3D wind fields previously simulated for the Nellis Dunes area near Las Vegas, NV. Results show that the improved mass consistent modeling system shows better agreement with the recorded meteorological tower data than the previous results obtained using constant moduli.

References

References
1.
U.S. Government, Department of Energy,
2018
, “
Official Energy Statistics from the U.S. Government, Energy Information Administration
,” U.S. Energy Information Administration, Washington, DC, accessed Jan. 06, 2018, https://www.eia.gov/todayinenergy/detail.php?id=34652
2.
Eloranta
,
E. W.
,
Mayor
,
S. D.
, and
Garcia
,
J. P.
,
1999
, “
Lidar Measurements of Vector Wind Fields
,”
Pacific Rim Conference on Lasers and Electro-Optics, CLEO—Technical Digest
, Baltimore, MD, May 23–28, p.
143
.
3.
Long
,
D. G.
, and
Mendel
,
J. M.
,
1990
, “
Model-Based Estimation of Wind Fields Over the Ocean From Wind Scatterometer Measurements—II: Model Parameter Estimation
,”
IEEE Trans. Geosci. Remote Sensing
,
28
(
3
), p.
361
.
4.
Simley
,
E.
,
Pao
,
L.
,
Kelley
,
N.
,
Jonkman
,
B.
, and
Frehlich
,
R.
,
2012
, “
LIDAR Wind Speed Measurements of Evolving Wind Fields
,”
AIAA
Paper No. 2012-0656.
5.
Endlich
,
R. M.
,
1984
, “
Wind Energy Estimates by Use of a Diagnostic Model
,”
Boundary Layer Meteorol.
,
30
(
1–4
), p.
375
.
6.
Sasaki
,
Y.
,
1958
, “
Some Basic Formalisms in Numerical Variational Analysis
,”
J. Meteorol. Soc.
,
36
(
3
), p.
77
.
7.
Sherman
,
C. A.
,
1978
, “
A Mass-Consistent Model for Wind Field Over Complex Terrain
,”
J. Appl. Meteorol.
,
17
(
3
), p.
312
.
8.
Dickerson
,
M. H.
,
1978
, “
MASCON-A Mass Consistent Atmospheric Flux Model for Regions With Complex Terrain
,”
J. Appl. Meteorol.
,
17
(
3
), p.
241
.
9.
Mathur
,
R.
, and
Peters
,
L. K.
,
1990
, “
Adjustment of Wind Fields for Application in Air Pollution Modeling
,”
Atmos. Environ.
,
24
(
5
), p.
1095
.
10.
Montero
,
G. E.
,
Montenegro
,
R.
,
Escobar
,
J. M.
, and
González-Yuste
,
J. M.
,
2005
, “
Genetic Algorithms for an Improved Parameter Estimation With Local Refinement of Tetrahedral Meshes in a Wind Model
,”
Adv. Eng. Software
,
36
, p.
3
.
11.
Davis
,
C. G.
,
Bunker
,
S. S.
, and
Mutschlecner
,
J. P.
,
1984
, “
Atmospheric Transport Models for Complex Terrain
,”
Clim. Appl. Meteorol.
,
23
(
2
), p.
235
.
12.
Ross
,
D. G.
, and
Smith
,
I. N.
,
1998
, “
Diagnostic Wind Field Modeling for Complex Terrain: Model Development and Testing
,”
Am. Meteorol. Soc.
,
27
, p.
785
.https://www.jstor.org/stable/26183717?seq=1#page_scan_tab_contents
13.
Sugiyama
,
G.
, and
Chan
,
S. T.
,
1998
, “
A New Meteorological Data Assimilation Model for Real-Time Emergency Response
,”
Am. Meteorol. Soc.
,
11
, p.
285
.https://narac.llnl.gov/content/mods/publications/op-model-description-evaluation/UCRL-JC-127579.pdf
14.
Kasbadji
,
N.
,
Merzouk
,
M.
, and
Messen
,
N.
,
2003
, “
A Mass Consistent Model Application to the Study of Phenomenon in Advance of Sand Towards the Algrian High Plains
,”
Renewable Energy
,
28
, p.
655
.
15.
Ferragut
,
L.
,
Montenegro
,
R.
,
Montero
,
G.
,
Rodrıguez
,
E.
,
Asensio
,
M. I.
, and
Escobar
,
J. M.
,
2010
, “
Comparison Between 2.5-D and 3-D Realistic Models for Wind Field Adjustment
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
10–11
), p.
548
.
16.
Pepper
,
D. W.
, and
Wang
,
X.
,
2009
, “
An h-Adaptive Finite-Element Technique for Constructing 3D Wind Fields
,”
J. Appl. Meteorol. Climatol.
,
48
(
3
), p.
580
.
17.
Kim
,
D. H.
,
Lee
,
H. W.
,
Park
,
S. Y.
,
Yu
,
J. W.
,
Park
,
C. H.
,
Park
,
C. H.
, and
Park
,
J. H.
,
2014
, “
Correction of Surface Characteristics to Diagnostic Wind Modeling and Its Impact on Potentials of Wind Power Density
,”
J. Renewable Sustainable Energy
,
6
(
4
), p.
042012
.
18.
Hu
,
H.
, and
Hong
,
G.
,
2014
, “
Simulation Method for 3-D Wind Field Over Complex Terrain With Asymmetrical Mountains
,”
Appl. Mech. Mater.
,
444
, p.
549
.https://www.scientific.net/AMM.444-445.549
19.
Goodin
,
W. R.
,
McRa
,
G. J.
, and
Seinfeld
,
J. H.
,
1979
, “
A Comparison of Interpolation Methods for Sparse Data: Application to Wind and Concentration Fields
,”
J. Appl. Meteorol.
,
18
(
6
), p.
761
.
20.
Kitada
,
T.
,
Kaki
,
A.
,
Ueda
,
H.
, and
Peters
,
L. K.
,
1983
, “
Estimation of Vertical Air Motion From Limited Horizontal Wind Data-a Numerical Experiment
,”
Atmos. Environ.
,
17
(
11
), p.
2181
.
21.
Ratto
,
C. F.
,
Georgieva
,
E.
,
Canepa
,
E.
, and
Mazzino
,
A.
,
2002
, “
WINDS Release 4.2 User's Guide
,”
Department of Physics, University of Genova
,
Genova, Italy
.
22.
Ross
,
D. G.
,
Smith
,
I. N.
,
Manins
,
P. C.
, and
Fox
,
D. G.
,
1988
, “
Diagnostic Wind Field Modeling for Complex Terrain: Model Development and Testing
,”
J. Appl. Meteorol.
,
27
(
7
), p.
785
.
23.
Andronopoulos
,
S.
,
Venetsanos
,
A. G.
,
Bartzis
,
J. G.
, and
Kocalets
,
I. V.
,
2008
, “
Optimization of the Numerical Algorithms of the ADREA-I Mesoscale Prognostic Meteorological Model for Real-Time Applications
,”
Environ. Modell. Software
,
23
(
1
), p.
96
.https://www.sciencedirect.com/science/article/pii/S1364815207000941
24.
Liu
,
Y.
,
2011
, “
An Improved Diagnostic Mass Consistent Model for 3-D Wind Fields Construction
,” M.S. thesis, Purdue University, Lafayette, IN.
25.
Manwell
,
J. F.
,
Mcgowan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained—Theory, Design and Application
,
Wiley
,
DeKalb, IL
.
26.
Heinrich
,
J. C.
, and
Pepper
,
D. W.
,
1999
,
Intermediate Finite Element Method—Fluid Flow and Heat Transfer Applications
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.