A design concept for a wind turbine blade with an adaptive twist transformation is presented. The design improves partial-load wind capture by adapting the twist distribution in relation to wind speed. Structural adaptability is enabled by actuating a series of compliant sections that are mounted on a relatively rigid spar. The sections are assumed to have a unique stiffness that is achievable through additive manufacturing technology. The authors' prior work employed an aerodynamic model to establish the theoretical blade twist distribution as a function of wind speed. The work in this paper focuses on a method to optimize the stiffness of each blade section that has been previously defined. A mathematical model is proposed to support design optimization. The model is parameterized in terms of actuator locations and the torsional stiffness ratios of each blade section. These parameters are optimized to allow the blade to adapt its twist distribution to match the prescribed configurations. The optimization is completed using a weighted-least squares approach that minimizes the error between the theoretical and practical design. The selected solution is based upon the configuration that maximizes production. Weights are assigned to bias the performance of the blade toward different operating regimes. Our results indicate that quadratically penalizing twist angle errors toward the blade tip increases power capture. A Rayleigh distribution is used to create three sets of wind data, which vary in average speed. These sets of data are used to evaluate the performance of the proposed blade and design technique.

References

1.
Ponta
,
F. L.
,
Otero
,
A. D.
,
Rajan
,
A.
, and
Lago
,
L. I.
,
2014
, “
The Adaptive-Blade Concept in Wind-Power Applications
,”
Energy Sustainable Develop.
,
22
, pp.
3
12
.
2.
Lin
,
J.
,
Luo
,
Z.
, and
Tong
,
L.
,
2010
, “
Design of Adaptive Cores of Sandwich Structures Using a Compliant Unit Cell Approach and Topology Optimization
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081012.
3.
Trease
,
B.
, and
Kota
,
S.
,
2009
, “
Design of Adaptive and Controllable Compliant Systems With Embedded Actuators and Sensors
,”
ASME J. Mech. Des.
,
131
(
11
), p.
111001
.
4.
Calkins
,
F. T.
, and
Mabe
,
J. H.
,
2010
, “
Shape Memory Alloy Based Morphing Aerostructures
,”
ASME J. Mech. Des.
,
132
(
11
), p.
111012
.
5.
Fasel
,
U.
,
Keidel
,
D.
,
Molinari
,
G.
, and
Ermanni
,
P.
,
2017
, “
Aerostructural Optimization of a Morphing Wing for Airborne Wind Energy Applications
,”
Smart Mater. Struct.
,
26
(
9
), p.
095043
.
6.
Molinari
,
G.
,
Quack
,
M.
,
Dmitriev
,
V.
,
Morari
,
M.
,
Jenny
,
P.
, and
Ermanni
,
P.
,
2011
, “
Aero-Structural Optimization of Morphing Airfoils for Adaptive Wings
,”
J. Intell. Mater. Syst. Struct.
,
22
(
10
), pp.
1075
1089
.
7.
Jenett
,
B.
,
Calisch
,
S.
,
Cellucci
,
D.
,
Cramer
,
N.
,
Gershenfeld
,
N.
,
Swei
,
S.
, and
Cheung
,
K. C.
,
2016
, “
Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures
,”
Soft Rob.
,
4
(
1
), pp.
33
48
.
8.
Stephen
,
D.
, and
Paul
,
M. W.
,
2012
, “
A Morphing Trailing Edge Device for a Wind Turbine
,”
J. Intell. Mater. Syst. Struct.
,
23
(
6
), pp.
691
701
.
9.
Vasista
,
S.
,
Tong
,
L.
, and
Wong
,
K. C.
,
2012
, “
Realization of Morphing Wings: A Multidisciplinary Challenge
,”
J. Aircr.
,
49
(
1
), pp.
11
28
.
10.
U.S. DoE,
2015
, “Wind Vision: A New Era for Wind Power in the United States,” U.S. Department of Energy, Washington, DC, Report No.
DOE/GO-102015-4557
.https://www.energy.gov/eere/wind/downloads/wind-vision-new-era-wind-power-united-states
11.
IEA Wind
,
2013
, “
Long-Term Research and Development Needs for Wind Energy for the Time Frame 2012 to 2030
,” IEA Wind, Paris, France,
Report
.https://nachhaltigwirtschaften.at/resources/iea_pdf/iea_wind_longterm_research_2012_2030.pdf
12.
Philibert
,
C.
, and
Holttinen
,
H.
,
2013
,
Technology Roadmap: Wind Energy
,
International Energy Agency
,
Paris, France
.
13.
Weisshaar
,
T. A.
,
2013
, “
Morphing Aircraft Systems: Historical Perspectives and Future Challenges
,”
J. Aircr.
,
50
(2), pp. 337–353.
14.
Castaignet
,
D.
,
Couchman
,
I.
,
Poulsen
,
N. K.
,
Buhl
,
T.
, and
Wedel-Heinen
,
J. J.
,
2013
, “
Frequency-Weighted Model Predictive Control of Trailing Edge Flaps on a Wind Turbine Blade
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1105
1116
.
15.
Pechlivanoglou
,
G.
,
Wagner
,
J.
,
Nayeri
,
C.
, and
Paschereit
,
C.
,
2010
, “
Active Aerodynamic Control of Wind Turbine Blades With High Deflection Flexible Flaps
,”
AIAA
Paper No. 2010-644.
16.
Wang
,
Y.
,
Sun
,
X.
,
Dong
,
X.
,
Zhu
,
B.
,
Huang
,
D.
, and
Zheng
,
Z.
,
2016
, “
Numerical Investigation on Aerodynamic Performance of a Novel Vertical Axis Wind Turbine With Adaptive Blades
,”
Energy Convers. Manage.
,
108
, pp.
275
286
.
17.
Alejandro Franco
,
J.
,
Carlos Jauregui
,
J.
, and
Toledano-Ayala
,
M.
,
2015
, “
Optimizing Wind Turbine Efficiency by Deformable Structures in Smart Blades
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051206
.
18.
Alejandro Franco
,
J.
,
Carlos Jauregui
,
J.
,
Carbajal
,
A.
, and
Toledano-Ayala
,
M.
,
2017
, “
Shape Morphing Mechanism for Improving Wind Turbines Performance
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051214
.
19.
Capuzzi
,
M.
,
Pirrera
,
A.
, and
Weaver
,
P. M.
,
2014
, “
A Novel Adaptive Blade Concept for Large-Scale Wind Turbines—Part I: Aeroelastic Behaviour
,”
Energy
,
73
, pp.
15
24
.
20.
Capuzzi
,
M.
,
Pirrera
,
A.
, and
Weaver
,
P. M.
,
2014
, “
A Novel Adaptive Blade Concept for Large-Scale Wind Turbines—Part II: Structural Design and Power Performance
,”
Energy
,
73
, pp.
25
32
.
21.
Barbarino
,
S.
,
Bilgen
,
O.
,
Ajaj
,
R. M.
,
Friswell
,
M. I.
, and
Inman
,
D. J.
,
2011
, “
A Review of Morphing Aircraft
,”
J. Intell. Mat. Syst. Struct.
,
22
(
9
), pp.
823
877
.
22.
Jae-Sang
,
P.
,
Seong-Hwan
,
K.
,
Sung Nam
,
J.
, and
Myeong-Kyu
,
L.
,
2011
, “
Design and Analysis of Variable-Twist Tiltrotor Blades Using Shape Memory Alloy Hybrid Composites
,”
Smart Mater. Struct.
,
20
(
1
), p.
015001
.
23.
Park
,
J.-S.
,
Kim
,
S.-H.
, and
Jung
,
S. N.
,
2011
, “
Optimal Design of a Variable-Twist Proprotor Incorporating Shape Memory Alloy Hybrid Composites
,”
Compos. Struct.
,
93
(
9
), pp.
2288
2298
.
24.
Lachenal
,
X.
,
Daynes
,
S.
, and
Weaver
,
P. M.
,
2013
, “
Review of Morphing Concepts and Materials for Wind Turbine Blade Applications
,”
Wind Energy
,
16
(
2
), pp.
283
307
.
25.
Wang
,
W.
,
Caro
,
S.
,
Bennis
,
F.
, and
Salinas Mejia
,
O. R.
,
2013
, “
A Simplified Morphing Blade for Horizontal Axis Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011018
.
26.
Gili
,
P.
, and
Frulla
,
G.
,
2016
, “
A Variable Twist Blade Concept for More Effective Wind Generation: Design and Realization
,”
Smart Sci.
,
4
(
2
), pp.
78
86
.
27.
Barbarino
,
S.
,
Gandhi
,
F.
, and
Webster
,
S. D.
, 2011, “
Design of Extendable Chord Sections for Morphing Helicopter Rotor Blades
,”
J. Intell. Mater. Syst. Struct.
,
22
(9), pp. 891–905.
28.
Wagg
,
D.
,
Bond
,
I.
,
Weaver
,
P.
, and
Friswell
,
M.
,
2008
,
Adaptive Structures: Engineering Applications
,
Wiley
,
Hoboken, NJ
.
29.
Kudikala
,
R.
,
Kalyanmoy
,
D.
, and
Bhattacharya
,
B.
,
2009
, “
Multi-Objective Optimization of Piezoelectric Actuator Placement for Shape Control of Plates Using Genetic Algorithms
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091007
.
30.
Loth
,
E.
,
Selig
,
M.
, and
Moriarty
,
P.
,
2010
, “
Morphing Segmented Wind Turbine Concept
,”
AIAA
Paper No. 2010-4400.
31.
Maheshwaraa Namasivayam
,
U.
, and
Conner Seepersad
,
C.
,
2011
, “
Topology Design and Freeform Fabrication of Deployable Structures With Lattice Skins
,”
Rapid Prototyping J.
,
17
(
1
), pp.
5
16
.
32.
Liu
,
S.
,
Li
,
Y.
, and
Li
,
N.
,
2018
, “
A Novel Free-Hanging 3D Printing Method for Continuous Carbon Fiber Reinforced Thermoplastic Lattice Truss Core Structures
,”
Mater. Des.
,
137
(
Suppl. C
), pp.
235
244
.
33.
Nejadkhaki
,
H. K.
, and
Hall
,
J. F.
,
2018
, “
Modeling and Design Method for an Adaptive Wind Turbine Blade With Out-of-Plane Twist
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
051010
.
34.
Nejadkhaki
,
H. K.
,
Hall
,
J. F.
,
Zheng
,
M.
, and
Wu
,
T.
,
2018
, “
Integrative Modeling Platform for Design and Control of an Adaptive Wind Turbine Blade
,”
ASME
Paper No. DSCC2018-9235.
35.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
.
36.
Johnson
,
K. E.
, and
Fingersh
,
L. J.
,
2008
, “
Adaptive Pitch Control of Variable-Speed Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
130
(
3
), p.
031012
.
37.
Nejadkhaki
,
H. K.
, and
Hall
,
J. F.
,
2017
, “
A Design Methodology for a Flexible Wind Turbine Blade With an Actively Variable Twist Distribution to Increase Region 2 Efficiency
,”
ASME
Paper No. V02AT03A025.
38.
Moghaddam
,
N. S.
,
Skoracki
,
R.
,
Miller
,
M.
,
Elahinia
,
M.
, and
Dean
,
D.
,
2016
, “
Three Dimensional Printing of Stiffness-Tuned, Nitinol Skeletal Fixation Hardware With an Example of Mandibular Segmental Defect Repair
,”
Procedia CIRP
,
49
, pp.
45
50
.
39.
Hau
,
E.
, and
Renouard
,
H. E. V.
,
2014
,
Wind Turbines: Fundamentals, Technologies, Application, Economics
,
Springer
,
Berlin
.
40.
Gonzalez
,
A.
, and
Munduate
,
X.
,
2008
, “
Three-Dimensional and Rotational Aerodynamics on the NREL Phase VI Wind Turbine Blade
,”
ASME J. Sol. Energy Eng.
,
130
(
3
), p.
031008
.
41.
Carta
,
J. A.
,
Ramírez
,
P.
, and
Velázquez
,
S.
,
2009
, “
A Review of Wind Speed Probability Distributions Used in Wind Energy Analysis: Case Studies in the Canary Islands
,”
Renewable Sustainable Energy Rev.
,
13
(
5
), pp.
933
955
.
42.
Wais
,
P.
,
2017
, “
A Review of Weibull Functions in Wind Sector
,”
Renewable Sustainable Energy Rev.
,
70
, pp.
1099
1107
.
43.
Da Rosa
,
A. V.
,
2012
,
Fundamentals of Renewable Energy Processes
,
Academic Press
,
Waltham, MA
.
You do not currently have access to this content.