Several studies on wind energy have been conducted to find possible solutions to power issues related to the variable nature of the wind. One of the most promising seems to be the application of sinusoidal modifications (tubercles) on the leading edge of wind turbine blades. In the present work, a systematic study on the effects of different tubercle configurations on NREL phase VI wind turbine performance is conducted. A design of experiments is used to generate blades with different tubercle amplitude and wavelength that are then simulated by a computational fluid dynamics (CFD) analysis. The resulting power and annual energy production (AEP) are compared with the baseline values noticing a positive effect of tubercles on the power at high wind speeds.

References

References
1.
Fish
,
F. E.
, and
Battle
,
J. M.
,
1995
, “
Hydrodynamic Design of the Humpback Whale Flipper
,”
J. Morphol.
,
225
(
1
), pp.
51
60
.
2.
Fish
,
F.
, and
Lauder
,
G.
,
2006
, “
Passive and Active Flow Control by Swimming Fishes and Mammals
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
193
224
.
3.
Miklosovic
,
D.
,
Murray
,
M.
,
Howle
,
L.
, and
Fish
,
F.
,
2004
, “
Leading-Edge Tubercles Delay Stall on Humpback Whale (Megaptera Novaeangliae) Flippers
,”
Phys. Fluids
,
16
(
5
), pp.
L39
L42
.
4.
Hansen
,
K. L.
,
Kelso
,
R. M.
, and
Dally
,
B. B.
,
2011
, “
Performance Variations of Leading-Edge Tubercles for Distinct Airfoil Profiles
,”
AIAA J.
,
49
(
1
), pp.
185
194
.
5.
Hansen
,
K. L.
,
2012
, “
Effect of Leading Edge Tubercles on Airfoil Performance
,” Ph.D. thesis, The University of Adelaide, Adelaide, Australia.
6.
Hansen
,
K. L.
,
Rostamzadeh
,
N.
,
Kelso
,
R. M.
, and
Dally
,
B. B.
,
2016
, “
Evolution of the Streamwise Vortices Generated Between Leading Edge Tubercles
,”
J. Fluid Mech.
,
788
, pp.
730
766
.
7.
Zhang
,
R.-K.
, and
Wu
,
V. D. J.-Z.
,
2012
, “
Aerodynamic Characteristics of Wind Turbine Blades With a Sinusoidal Leading Edge
,”
Wind Energy
,
15
(
3
), pp.
407
424
.
8.
Abate
,
G.
, and
Mavris
,
D. N.
,
2017
, “
CFD Analysis of Leading Edge Tubercle Effects on Wind Turbine Performance
,”
AIAA
Paper No. 2017-4626.https://arc.aiaa.org/doi/10.2514/6.2017-4626
9.
Abate
,
G.
, and
Mavris
,
D. N.
,
2018
, “
Performance Analysis of Different Positions of Leading Edge Tubercles on a Wind Turbine Blade
,”
AIAA
Paper No. 2018-1494.
10.
Skillen
,
A.
,
Revell
,
A.
,
Pinelli
,
A.
,
Piomelli
,
U.
, and
Favier
,
J.
,
2014
, “
Flow Over a Wing With Leading-Edge Undulations
,”
AIAA J.
,
53
(
2
), pp.
464
472
.
11.
Johari
,
H.
,
Henoch
,
C. W.
,
Custodio
,
D.
, and
Levshin
,
A.
,
2007
, “
Effects of Leading-Edge Protuberances on Airfoil Performance
,”
AIAA J.
,
45
(
11
), pp.
2634
2642
.
12.
Kumar
,
S.
, and
Amano
,
R.
,
2012
, “
Wind Turbine Blade Design and Analysis With Tubercle Technology
,”
ASME
Paper No. DETC2012-70688.
13.
Huang
,
G.-Y.
,
Shiah
,
Y.
,
Bai
,
C.-J.
, and
Chong
,
W.
,
2015
, “
Experimental Study of the Protuberance Effect on the Blade Performance of a Small Horizontal Axis Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
147
, pp.
202
211
.
14.
Bellequant
,
L.
, and
Howle
,
L. E.
,
2009
, “
WhalePower Wenvor Blade: A Report in the Efficiency of a WalePower Corp. 5 Meter Prototype Wind Turbine Blade
,” BelleQuant Engineering, PLLC, Mebane, NC.
15.
Ibrahim
,
M.
,
Alsultan
,
A.
,
Shen
,
S.
, and
Amano
,
R. S.
,
2015
, “
Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051205
.
16.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
17.
Hand
,
M.
,
Simms
,
D.
,
Fingersh
,
L.
,
Jager
,
D.
,
Cotrell
,
J.
,
Schreck
,
S.
, and
Larwood
,
S.
,
2001
, “
Unsteady Aerodynamics Experiment Phase—VI: Wind Tunnel Test Configurations and Available Data Campaigns
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-500-29955
.https://www.nrel.gov/docs/fy02osti/29955.pdf
18.
Johnson
,
M. E.
,
Moore
,
L. M.
, and
Ylvisaker
,
D.
,
1990
, “
Minimax and Maximin Distance Designs
,”
J. Stat. Plann. Inference
,
26
(
2
), pp.
131
148
.
19.
Loeppky
,
J. L.
,
Sacks
,
J.
, and
Welch
,
W. J.
,
2009
, “
Choosing the Sample Size of a Computer Experiment: A Practical Guide
,”
Technometrics
,
51
(
4
), pp.
366
376
.
21.
Aranake
,
A. C.
,
Lakshminarayan
,
V. K.
, and
Duraisamy
,
K.
,
2012
, “
Assessment of Transition Model and CFD Methodology for Wind Turbine Flows
,”
AIAA
Paper No. 2012-2720.
22.
Sørensen
,
N. N.
,
Michelsen
,
J.
, and
Schreck
,
S.
,
2002
, “
Navier–Stokes Predictions of the NREL Phase VI Rotor in the NASA AMES 80 ft × 120 ft Wind Tunnel
,”
Wind Energy
,
5
(
2–3
), pp.
151
169
.
23.
Yelmule
,
M. M.
, and
Vsj
,
E. A.
,
2013
, “
CFD Predictions of NREL Phase VI Rotor Experiments in NASA/AMES Wind Tunnel
,”
Int. J. Renewable Energy Res.
,
3
(
2
), pp.
261
269
.https://www.ijrer.com/index.php/ijrer/article/view/570
24.
Johansen
,
J.
,
Sorensen
,
N.
,
Michelsen
,
J.
, and
Schreck
,
S.
,
2002
, “
Detached-Eddy Simulation of Flow Around the NREL Phase-VI Blade
,”
ASME
Paper No. WIND2002-32.
25.
Mo
,
J.-O.
, and
Lee
,
Y.-H.
,
2012
, “
CFD Investigation on the Aerodynamic Characteristics of a Small-Sized Wind Turbine of NREL Phase VI Operating With a Stall-Regulated Method
,”
J. Mech. Sci. Technol.
,
26
(
1
), pp.
81
92
.
26.
Burton
,
T.
,
Sharpe
,
D.
,
Jenkins
,
N.
, and
Bossanyi
,
E.
,
2001
,
Wind Energy Handbook
,
Wiley
,
New York
.
You do not currently have access to this content.