A multirotor system (MRS) is defined as containing more than one rotor in a single structure. MRSs have a great potential as a wind turbine system, saving mass and cost, and showing scale ability. The shrouded wind turbine with brimmed diffuser-augmented wind turbines (B-DAWT) has demonstrated power augmentation for a given turbine diameter and wind speed by a factor of about 2–5 compared with a bare wind turbine. In the present research, B-DAWTs are used in a multirotor system. The power output performance of MRSs using two and three B-DAWTs in a variety of configurations has been investigated in the previous works. In the present study, the aerodynamics of an MRS with five B-DAWTs, spaced in close vicinity in the same vertical plane normal to a uniform flow, has been analyzed. Power output increases of up to 21% in average for a five-rotor MRS configuration are achieved in comparison to that for the stand-alone configuration. Thus, when B-DAWTs are employed as the unit of a MRS, the total power output is remarkably increased. As the number of units for an MRS is increased from two to five, the increase in power output becomes larger and larger. This is because that the gap flows between B-DAWTs in a MRS are accelerated and cause lowered pressure regions due to vortex interaction behind the brimmed diffusers. Thus, a MRS with more B-DAWTs can draw more wind into turbines showing higher power output.

References

References
1.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
2.
Jamieson
,
P.
, and
Branney
,
M.
,
2012
, “
Multi-Rotors; A Solution to 20 MW and Beyond?
,”
Energy Procedia
,
24
, pp.
52
59
.
3.
Jamieson
,
P.
,
2018
,
Innovation in Wind Turbine Design
,
2nd ed.
,
Wiley
, Chichester, UK.
4.
Sieros
,
G.
,
Chaviaropoulos
,
P.
,
Sørensen
,
J. D.
,
Bulder
,
B. H.
, and
Jamieson
,
P.
,
2012
, “
Upscaling Wind Turbines: Theoretical and Practical Aspects and Their Impact on the Cost of Energy
,”
Wind Energy
,
15
(
1
), pp.
3
17
.
5.
Hofmann
,
M.
, and
Sperstad
,
I. B.
,
2014
, “
Will 10 MW Wind Turbines Bring Down the Operation and Maintenance Cost of Offshore Wind Farms?
,”
Energy Procedia
,
53
, pp.
231
238
.
6.
Heronemus
,
W.
,
1972
, “
Pollution-Free Energy From Offshore Winds
,”
Eighth Annual Conference and Exposition
, Washington, DC, Dec. 26–31.
7.
Smulders
,
P. T.
,
Orbons
,
S.
, and
Moes
,
C.
,
1984
, “
Aerodynamic Interaction of Two Rotors Set Next to Each Other in One Plane
,”
European Wind Energy Conference
, Hamburg, Germany, Oct. 22–26, pp.
529
533
.
8.
Ransom
,
D.
,
Moore
,
J. J.
, and
Heronemus-Pate
,
M.
,
1984
, “
Performance of Wind Turbines in a Closely Spaced Array
,”
Renewable Energy World
,
2
(
3
), pp.
32
36
.https://www.renewableenergyworld.com/articles/print/rewna/volume-2/issue-3/wind-power/performance-of-wind-turbines-in-a-closely-spaced-array.html
9.
Chasapogiannis
,
P.
,
Prospathopoulos
,
J. M.
,
Voutsinas
,
S. G.
, and
Chaviaropoulos
,
T. K.
,
2014
, “
Analysis of the Aerodynamic Performance of the Multi-Rotor Concept
,”
J. Phys: Conf. Ser.
,
524
, p.
012084
.
10.
Yoshida
,
S.
,
Goeltenbott
,
U.
,
Ohya
,
Y.
, and
Jamieson
,
P.
,
2016
, “
Coherence Effects on the Power and Tower Loads of a 7 × 2 MW Multi-Rotor Wind Turbine System
,”
Energies
,
9
(
9
), pp.
742
757
.
11.
INNWIND.EU,
2017
, “
Deliverable 1.33 Innovative Turbine Concepts—Multi-Rotor System
,” European Union, Brussels, Belgium, accessed Sept. 26, 2017, http://www.innwind.eu/publications/deliverable-reports
12.
Ohya
,
Y.
,
Miyazaki
,
J.
,
Göltenbott
,
U.
, and
Watanabe
,
K.
,
2017
, “
Power Augmentation of Shrouded Wind Turbines in a Multirotor System
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051202
.
13.
Göltenbott
,
U.
,
Ohya
,
Y.
,
Yoshida
,
S.
, and
Jamieson
,
P.
,
2017
, “
Aerodynamic Interaction of Diffuser Augmented Wind Turbines in Multi-Rotor Systems
,”
Renewable Energy
,
112
, pp.
25
34
.
14.
Watanabe
,
K.
, and
Ohya
,
Y.
,
2018
, “
Multi-Rotor Systems Using Three Shrouded Wind Turbines for Power Output Increase
,”
ASME J. Energy Resour. Technol.
(accepted).
15.
Gilbert
,
B. L.
, and
Foreman
,
K. M.
,
1983
, “
Experiments With a Diffuser-Augmented Model Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
105
(
1
), pp.
46
53
.
16.
Hansen
,
M. O. L.
,
Sørensen
,
N. N.
, and
Flay
,
R. G. J.
,
2000
, “
Effect of Placing a Diffuser Around a Wind Turbine
,”
Wind Energy
,
3
(
4
), pp.
207
213
.
17.
Abe
,
K.
,
Nishida
,
M.
,
Sakurai
,
A.
,
Ohya
,
Y.
,
Kihara
,
H.
,
Wada
,
E.
, and
Sato
,
K.
,
2005
, “
Experimental and Numerical Investigations of Flow Fields Behind a Small Wind Turbine With a Flanged Diffuser
,”
J. Wind Eng. Ind. Aerodyn.
,
93
(
12
), pp.
951
970
.
18.
van Bussel
,
G. J. W.
,
2007
, “
The Science of Making More Torque From Wind: Diffuser Experiments and Theory Revisited
,”
J. Phys.: Conf. Ser.
,
75
, p.
012010
.
20.
Sedaghat
,
A.
,
Waked
,
A. R.
,
Assad
,
H. E. M.
,
Khanafer
,
K.
, and
Salim
,
B. N. M.
,
2017
, “
Analysis of Accelerating Devices for Enclosure Wind Turbines
,”
Int. J. Astron. Aeron. Eng.
,
2
(
2
), pp. 1–14.https://www.researchgate.net/publication/319269142_Analysis_of_Accelerating_Devices_for_Enclosure_Wind_Turbines
21.
Khamlaj
,
A. T.
, and
Rumpfkeil
,
P. M.
,
2018
, “
Analysis and Optimization Study of Shrouded Horizontal Axis Wind Turbines
,”
Wind Energy Symposium, AIAA SciTech Forum
, Kisimmee, FL, Jan. 8–12, pp. 1–32.
22.
Chaker
,
R.
,
Kardous
,
M.
,
Chouchen
,
M.
,
Aloui
,
F.
, and
Nasrallah
,
S. B.
,
2016
, “
Vortices' Characteristics to Explain the Flange Height Effects on the Aerodynamic Performances of a Diffuser Augmented Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
061013
.
23.
Venters
,
R.
,
Helenbrook
,
B. T.
, and
Visser
,
K. D.
,
2018
, “
Ducted Wind Turbine Optimization
,”
ASME J. Sol. Energy Eng.
,
140
, p.
011005
.
24.
Ohya
,
Y.
,
Karasudani
,
T.
,
Sakurai
,
A.
,
Abe
,
K.
, and
Inoue
,
M.
,
2008
, “
Development of a Shrouded Wind Turbine With a Flanged Diffuser
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
5
), pp.
524
539
.
25.
Ohya
,
Y.
, and
Karasudani
,
T.
,
2010
, “
A Shrouded Wind Turbine Generating High Output Power With Wind Lens Technology
,”
Energies
,
3
(
4
), pp.
634
649
.
26.
Takahashi
,
S.
,
Hata
,
Y.
,
Ohya
,
Y.
,
Karasudani
,
T.
, and
Uchida
,
T.
,
2012
, “
Behavior of the Blade Tip Vortices of a Wind Turbine Equipped With a Brimmed-Diffuser Shroud
,”
Energies
,
5
(
12
), pp.
5229
5242
.
27.
Ohya
,
Y.
,
Uchida
,
T.
,
Karasudani
,
T.
,
Hasegawa
,
M.
, and
Kume
,
H.
,
2012
, “
Numerical Studies of Flow Around a Wind Turbine Equipped With a Flanged-Diffuser Shroud Using an Actuator-Disk Model
,”
Wind Eng.
,
36
(
4
), pp.
455
472
.
28.
Wang
,
W.-X.
,
Matsubara
,
T.
,
Hu
,
J.
,
Odawara
,
S.
,
Nagai
,
T.
,
Karasudani
,
T.
, and
Ohya
,
Y.
,
2015
, “
Experimental Investigation Into the Influence of the Flanged Diffuser on the Dynamic Behavior of CFRP Blade of a Shrouded Wind Turbine
,”
Renewable Energy
,
78
, pp.
386
397
.
29.
Hayashi
,
M.
,
Sakurai
,
A.
, and
Ohya
,
Y.
,
1986
, “
Wake Interference of a Row of Normal Flat Plates Arranged Side by Side in a Uniform Flow
,”
J. Fluid Mech.
,
164
(
1
), pp.
1
25
.
30.
Ohya
,
Y.
,
Okajima
,
A.
, and
Hayashi
,
M.
,
1989
, “
Wake Interference and Vortex Shedding
,”
Encyclopedia of Fluid Mechanics
,
N. P.
Cheremisinoff
, ed., Vol.
8
,
Gulf Publishing Corporation
, Houston, TX, pp.
323
389
.
31.
Ohya
,
Y.
,
2014
, “
Bluff Body Flow and Vortex—Its Application to Wind Turbines
,”
Fluid Dyn. Res.
,
46
(
6
), p.
061423
.
You do not currently have access to this content.