Wind energy has had a major impact on the generation of renewable energy. While most research and development focuses on large, utility-scale wind turbines, a new application is in the field of small wind turbines for the urban environment. A major design challenge for urban wind turbines is the noise generated during operation. This study examines the power production and the noise generated by two small-scale wind turbines tested in a small wind tunnel. Both rotors were designed using the blade-element momentum theory using either the NREL S823 or the Eppler 216 airfoils. Point noise measurements were taken using a microphone at three locations downstream of the turbine: 16% of the diameter (two chord lengths), 50% of the diameter, and 75% of the diameter. At each location downstream of the turbine, a vertical traverse was performed to analyze the sound pressure level (SPL) from the tip of the turbine blades down to the hub. The rotor designed with the Eppler 216 airfoil showed a 9% increase in power production and decrease of up to 7 dB(A).

References

References
1.
World Population Prospects
,
2015
, “
2015 Revision: Key Findings and Advance Tables
,” United Nations, New York, accessed Sept. 2, 2018, https://esa.un.org/unpd/wpp/publications/files/key_findings_wpp_2015.pdf
2.
International Energy Agency, 2015, “
World Energy Outlook 2015
,” Paris, France, accessed Sept. 2, 2018, https://www.iea.org/Textbase/npsum/WEO2015SUM.pdf
3.
Organization for Economic Co-Operation and Development/International Energy Agency
,
2015
, “
2015 Key World Energy Statistics
,” International Energy Agency, Paris, France, accessed Oct. 27, 2016, https://www.iea.org/publications/freepublications/publication/KeyWorld2015.pdf
4.
Global Wind Energy Council
,
2015
, “
Global Wind Report: Annual Market Update 2015
,” Global Wind Energy Council, Brussels, Belguim, accessed Sept. 2, 2018, http://www.gwec.net/publications/global-wind-report-2/global-wind-report-2015-annual-market-update/
5.
Energy Information Administration
,
2016
, “
International Energy Outlook 2016
,” U.S. Department of Energy, Washington, DC, Report No.
DOE/EIA-0484
.https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf
6.
Wind Energy Foundation
, 2017, “
Wind Energy Economics
,” Wind Energy Foundation, Washington, DC, accessed Sept. 2, 2018, http://windenergyfoundation.org/about-wind-energy/economics/
7.
Renewable UK
,
2013
, “Small and Medium Wind UK Market Report,” Renewable UK, London, accessed Sept. 2, 2018, https://c.ymcdn.com/sites/www.renewableuk.com/resource/resmgr/Docs/small_medium_wind_uk_market_.pdf
8.
World Wind Energy Association
,
2015
, “2015 Small Wind World Report Summary,” World Wind Energy Association, Bonn, Germany, accessed Sept. 2, 2018, http://small-wind.org/wp-content/uploads/2014/12/Summary_SWWR2015_online.pdf
9.
Orrell
,
A. C.
, and
Foster
,
N. F.
,
2016
, “
2015 Distributed Wind Market Report
,” U. S. Department of Energy, Richland, Washington, Report No. PNNL-25636.
10.
Orell
,
A.
, and
Foster
,
N.
,
2015
, “
2014 Distributed Wind Market Report
,” Department of Energy, Richland, Washington, Report No. PNNL-24460.
11.
Woolsey
,
R. J.
,
Kleinfeld
,
R.
, and
Sexton
,
C.
,
2010
, “
No Strings Attached: The Case for a Distributed Grid and a Low-Oil Future
,”
World Affairs
,
173
(
3
), pp.
59
71
.https://www.jstor.org/stable/27870302?seq=1#metadata_info_tab_contents
12.
Elliot
,
D. L.
,
Holladay
,
C. G.
,
Barchet
,
W. R.
,
Foote
,
H. P.
, and
Sandusky
,
W. F.
,
1986
, “
Wind Energy Resource Atlas of the United States
,” U.S. Department of Energy, Richland, Washington, No. DE86004442_DOE/CH 10093-4.
13.
U.S. Department of Energy, National Renewable Energy Laboratory (NREL)
,
2009
, “United States—Wind Resource Map,” National Renewable Energy Laboratory (NREL), Boulder, CO.
14.
Womeldorf
,
C. A.
,
2012
, “
Design of an Extra-Tall Mast Above Blade-Tip Heights for Wind Resource Assessments Across Complex Terrain Regions
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
015001
.
15.
Burdett
,
T.
, and
Van Treuren
,
K. W.
,
2014
, “
Small Scale Wind Turbines Optimized for Class 2 Wind: A Siting Survey and Annual Energy Production Analysis
,”
ASME
Paper No. GT2014-26243.
16.
Dodman
,
D.
,
2009
, “
Blaming Cities for Climate Change? An Analysis of Urban Greenhouse Gas Emissions Inventories
,”
Environ. Urbanization
,
21
(
1
), pp.
185
201
.
17.
Dayan
,
E.
,
2006
, “
Wind Energy in Buildings: Power Generation From Wind in the Urban Environment—Where It Is Needed Most
,”
Refocus
,
7
(
2
), pp. 33–34, 36, 38.
18.
Millward-Hopkins
,
J. T.
,
Tomlin
,
A. S.
,
Ma
,
L.
,
Ingham
,
D. B.
, and
Pourkashanian
,
M.
,
2013
, “
Assessing the Potential of Urban Wind Energy in a Major UK City Using an Analytical Model
,”
Renewable Energy
,
60
, pp.
701
710
.
19.
Lu
,
L.
, and
Ip
,
K. Y.
,
2009
, “
Investigation on the Feasibility and Enhancement Methods of Wind Power Utilization in High-Rise Buildings in Hong Kong
,”
Renewable Sustainable Energy Rev.
,
13
(2), pp.
450
461
.
20.
Sunderland
,
K.
,
Woolmington
,
T.
,
Blackledge
,
J.
, and
Conlon
,
M.
,
2013
, “
Small Wind Turbines in Turbulent (Urban) Environments: A Consideration of Normal and Weibull Distributions for Power Prediction
,”
J. Wind Eng. Ind. Aerodyn.
,
121
, pp.
70
81
.
21.
Duggan, C.
, and
Jak, M.
, 2004, “
Wind Power for Urban Applications
,”
ASME
Paper No. POWER2004-52041.
22.
Walker
,
S. L.
,
2011
, “
Building Mounted Wind Turbines and Their Suitability for the Urban Scale—A Review of Methods of Estimating Urban Wind Resource
,”
Energy Build.
,
43
(
8
), pp.
1852
1862
.
23.
Abohela
,
I.
,
Hamza
,
N.
, and
Dudek
,
S.
,
2013
, “
Effect of Roof Shape, Wind Direction, Building Height and Urban Configuration on the Energy Yield and Positioning of Roof Mounted Wind Turbines
,”
Renewable Energy
,
50
, pp.
1106
1108
.
24.
Drew
,
D. R.
,
Barlow
,
J. F.
, and
Cockerill
,
T. T.
,
2013
, “
Estimating the Potential Yield of Small Wind Turbines in Urban Areas: A Case Study for Greater London, UK
,”
J. Wind Eng. Ind. Aerodyn.
,
115
, pp.
104
111
.
25.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Carnevale
,
E. A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
Feasibility Analysis of a Darrius Vertical-Axis Wind Turbine Installation in the Rooftop of a Building
,”
Appl. Energy
,
97
, pp.
921
929
.
26.
Torcellini
,
P.
,
Pless
,
S.
,
Deru
,
M.
, and
Crawley
,
D.
,
2006
, “
Zero Energy Buildings: A Critical Look at the Definition
,” National Renewable Energy Laboratory (NREL), Boulder, CO, Report No.
NREL/CP-550-39833
.https://www.nrel.gov/docs/fy06osti/39833.pdf
27.
Grahm
,
P.
,
2014
, “
Integrating Renewable Energy Requirements in Building Codes Key to Helping the Building Sector Achieve Its Mitigation Potential
,” Global Building Performance Network (GBPN), Paris, France, accessed Sept. 5, 2016, http://www.gbpn.org/our-blog/integrating-renewable-energy-requirements-building-codes-key-helping-building-sector
28.
Dursun
,
A.
, and
Saglam
,
S.
,
2012
, “
A Technical Review of Building-Mounted Wind Power Systems and a Sample Simulation Model
,”
Renewable Sustainable Energy Rev.
,
16
(
1
), pp.
1040
1049
.
29.
Blanch
,
M. J.
,
2002
, “
Wind Energy Technologies for Use in the Built Environment
,”
Wind Eng.
,
26
(
3
), pp.
125
143
.
30.
Mithraratne
,
N.
,
2009
, “
Roof-Top Wind Turbines for Microgeneration in Urban Houses in New Zealand
,”
Energy Build.
,
41
(
10
), pp.
1013
1018
.
31.
Brooks
,
T.
,
Pope
,
D.
, and
Marcolini
,
M.
,
1989
, “
Airfoil Self-Noise and Prediction
,” NASA Reference Publication 1218, National Aeronautics and Space Administration, Hampton, VA.
32.
Wagner
,
S.
,
Barei
,
B. R.
, and
Guidati
,
G.
,
1996
,
Wind Turbine Noise
,
Springer
,
Berlin
, Chap. 4.
33.
Van Treuren
,
K. W.
,
2016
, “
Small Horizontal Axis Wind Turbines: Current Status and Future Challenges
,”
ASME
Paper No. GT2016-57701.
34.
Hays
,
A.
, and
Van Treuren
,
K. W.
,
2016
, “
Study of Noise Generation Using the Eppler 387, NACA 0012, NACA 4412 and NREL S823
,”
ASEE Gulf Southwest Graduate Student Competition
, Mar. 7–8, pp. 1–13.
35.
Hays
,
A.
, and
Van Treuren
,
K. W.
,
2016
, “
Study of Noise Generation Using the NACA 4412 and NREL S823 Airfoils
,”
AIAA Region IV Graduate Student Competition
, University of Texas at Arlington, Arlington, TX, Apr. 1–2, pp. 1–8.
36.
Hays
,
A.
, and
Van Treuren
,
K. W.
,
2016
, “
A Study of Noise Generation on the E387 S823 Airfoils, NACA 0012 and 4412 Airfoils for Use on Small-Scale Wind Turbines
,”
Second ICNGWE
, Aug. 24–26, pp. 1–22.
37.
Goçmen
,
T.
, and
Özerdem
,
B.
,
2012
, “
Airfoil Optimization for Noise Emission Problem and Aerodynamic Performance Criterion on Small Scale Wind Turbines
,”
Energy Exergy Modell. Adv. Energy Syst.
,
46
(
1
), pp.
62
71
.
38.
Migliore
,
P.
,
van Dam
,
J.
, and
Huskey
,
A.
,
2004
, “
Acoustic Tests of Small Wind Turbines
,”
NREL Wind Energy Symposium
, Reno, NV, Jan. 5–8, pp. 1–17.https://www.nrel.gov/docs/fy04osti/34662.pdf
39.
Van Treuren
,
K. W.
,
2015
, “
Small-Scale Wind Turbine Testing in Wind Tunnels Under Low Reynolds Number Conditions
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051208
.
40.
Burdett
,
T. A.
,
Gregg
,
J.
, and
Van Treuren
,
K. W.
,
2011
, “
An Examination of the Effect of Reynolds Number on Airfoil Performance
,”
ASME
Paper No. ES2011-54720.
41.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained: Theory Design and Application
,
2nd ed.
,
Wiley
, Chichester, UK.
42.
Burdett
,
T. A.
,
2012
, “
Aerodynamic Design Considerations for Small-Scale, Fixed-Pitch, Horizontal-Axis Wind Turbines Operating in Class 2 Winds
,” M.S. thesis, Baylor University, Waco, TX.
43.
Wisniewski
,
C.
,
Byerley
,
A.
,
Heiser
,
W.
,
Van Treuren
,
K. W.
, and
Liller
,
W.
,
2015
, “
The Influence of Airfoil Shape, Tip Geometry, Reynolds Number and Chord Length on Small Propeller Performance and Noise
,”
AIAA
Paper No. AIAA 2015-2266.
44.
Liller
,
W.
,
2015
, “
The Design of Small Propellers Operating at Low Reynolds Numbers and Associated Experimental Evaluation
,” M.S. thesis, Baylor University, Waco, TX.
45.
Burdett
,
T. A.
, and
Van Treuren
,
K. W.
,
2012
, “
Scaling Small-Scale Wind Turbines for Wind Tunnel Testing
,”
ASME
Paper No. GT2012-68359.
46.
Chen
,
T. Y.
, and
Liou
,
L. R.
,
2011
, “
Blockage Corrections in Wind Tunnel Tests of Small Horizontal-Axis Wind Turbines
,”
Exp. Therm. Fluid Sci.
,
35
(
3
), pp.
565
569
.
47.
Marten
,
D.
,
Wendler
,
J.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2013
, “
QBlade: An Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines
,”
Int. J. Emerging Technol. Adv. Eng.
,
3
(
SI 3
), pp.
264
269
.https://www.ijetae.com/index.html
48.
Driscoll
,
D. P.
, 2013, “
Noise, OSHA Technical Manual
,” U.S. Department of Labor, Washington, DC, accessed Sept. 2, 2018, https://www.osha.gov/dts/osta/otm/new_noise/
49.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(1), p.
3
.
You do not currently have access to this content.