The elliptical-bladed Savonius wind turbine rotor has become a subject of interest because of its better energy capturing capability. Hitherto, the basic parameters of this rotor such as overlap ratio, aspect ratio, and number of blades have been studied and optimized numerically. Most of these studies estimated the torque and power coefficients (CT and CP) at given flow conditions. However, the two important aerodynamic forces, viz., the lift and the drag, acting on the elliptical-bladed rotor have not been studied. This calls for a deeper investigation into the effect of these forces on the rotor performance to arrive at a suitable design configuration. In view of this, at the outset, two-dimensional (2D) unsteady simulations are conducted to find the instantaneous lift and drag forces acting on an elliptical-bladed rotor at a Reynolds number (Re) = 0.892 × 105. The shear stress transport (SST) k–ω turbulence model is used for solving the unsteady Reynolds averaged Navier–Stokes equations. The three-dimensional (3D) unsteady simulations are then performed which are then followed by the wind tunnel experiments. The drag and lift coefficients (CD and CL) are analyzed for 0–360 deg rotation of rotor with an increment of 1 deg. The total pressure, velocity magnitude, and turbulence intensity contours are obtained at various angles of rotor rotation. For the elliptical-bladed rotor, the average CD, CL, and CP, from 3D simulation, are found to be 1.31, 0.48, and 0.26, respectively. The average CP for the 2D elliptical profile is found to be 0.34, whereas the wind tunnel experiments demonstrate CP to be 0.19.

References

References
1.
Zecca
,
A.
, and
Chiari
,
L.
,
2010
, “
Fossil-Fuel Constraints on Global Warming
,”
Energy Policy
,
38
(
1
), pp.
1
3
.
2.
Derakhshan
,
S.
,
Tavaziani
,
A.
, and
Kasaeian
,
N.
,
2015
, “
Numerical Shape Optimization of a Wind Turbine Blades Using Artificial Bee Colony Algorithm
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051210
.
3.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
.
4.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
5.
Islam
,
A. K. M. S.
,
Islam
,
M. Q.
,
Razzaque
,
M. M.
, and
Ashraf
,
R.
,
1995
, “
Static Torque and Drag Characteristics of an S-Shaped Savonius Rotor and Prediction of Dynamic Characteristics
,”
Wind Eng.
,
19
(
6
), pp.
363
370
.https://www.jstor.org/stable/43749593?seq=1#page_scan_tab_contents
6.
Bhutta
,
A.
,
Hayat
,
M. M.
,
Farooq
,
N.
,
Ali
,
A. U.
,
Jamil
,
Z.
,
Rehan
,
S.
, and
Hussain
,
Z.
,
2012
, “
Vertical Axis Wind Turbine—A Review of Various Configurations and Design Techniques
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
1926
1939
.
7.
Mari
,
M.
,
Venturini
,
M.
, and
Beyene
,
A.
,
2017
, “
A Novel Geometry for Vertical Axis Wind Turbines Based on the Savonius Concept
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
061202
.
8.
Ross
,
I.
, and
Altman
,
A.
,
2011
, “
Wind Tunnel Blockage Corrections: Review and Application to Savonius Vertical-Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
5
), pp.
523
538
.
9.
Dobreva
,
I.
, and
Massouha
,
F.
,
2011
, “
CFD and PIV Investigation of Unsteady Flow Through Savonius Wind Turbine
,”
Energy Procedia
,
6
, pp.
711
720
.
10.
Sharma
,
K. K.
,
Gupta
,
R.
, and
Biswas
,
A.
,
2014
, “
Performance Measurement of a Two-Stage, Two-Bladed Savonius Rotor
,”
Int. J. Renewable Energy Res.
,
4
(
1
), pp.
115
121
.http://dergipark.gov.tr/download/article-file/148245
11.
Akwa
,
J. V.
,
Vielmo
,
H. A.
, and
Petry
,
A. P.
,
2012
, “
A Review on the Performance of Savonius Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3054
3064
.
12.
Battisti
,
L.
,
Zanne
,
L.
,
Dell'Anna
,
S.
,
Dossena
,
V.
,
Persico
,
G.
, and
Paradiso
,
B.
,
2011
, “
Aerodynamic Measurements on a Vertical Axis Wind Turbine in a Large Scale Wind Tunnel
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031201
.
13.
Menet
,
J. L.
,
2004
, “
A Double-Step Savonius Rotor for Local Production of Electricity: A Design Study
,”
Renewable Energy
,
29
(
11
), pp.
1843
1862
.
14.
Altan
,
B. D.
, and
Atilgan
,
M.
,
2008
, “
An Experimental and Numerical Study on the Improvement of the Performance of Savonius Wind Rotor
,”
Energy Convers. Manage.
,
49
(
12
), pp.
3425
3432
.
15.
Dossena
,
V.
,
Persico
,
G.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Dell'Anna
,
S.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2015
, “
An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051207
.
16.
Savonius
,
S. J.
,
1931
, “
The S-Rotor and Its Applications
,” Mech. Eng.,
53
, pp.
333
338
.
17.
Akwa
,
J. V.
,
Junior
,
G. A. S.
, and
Petry
,
A. P.
,
2012
, “
Discussion on the Verification of the Overlap Ratio Influence on Performance Coefficients of a Savonius Wind Rotor Using Computational Fluid Dynamics
,”
Renewable Energy
,
38
(
1
), pp.
141
149
.
18.
Roy
,
S.
, and
Saha
,
U. K.
,
2015
, “
Wind Tunnel Experiments of a Newly Developed Two-Bladed Savonius-Style Wind Turbine
,”
Appl. Energy
,
137
, pp.
117
125
.
19.
Rogowski
,
K.
, and
Maroński
,
R.
,
2015
, “
CFD Computation of the Savonius Rotor
,”
J. Theor. Appl. Mech.
,
53
(
1
), pp.
37
45
.https://www.researchgate.net/publication/277592753_CFD_computation_of_the_Savonius_rotor
20.
Gavalda
,
J.
,
Massons
,
J.
, and
Giaz
,
F.
,
1991
, “
Drag and Lift Coefficients of the Savonius Wind Machine
,”
Wind Eng.
,
15
(
5
), pp.
240
246
.https://www.jstor.org/stable/43750438?seq=1#page_scan_tab_contents
21.
Zhou
,
T.
, and
Rempfer
,
D.
,
2013
, “
Numerical Study of Detailed Flow Field and Performance of Savonius Wind Turbines
,”
Renewable Energy
,
51
, pp.
373
381
.
22.
Manwell
,
J. F.
,
Mcgowan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained: Theory, Design and Application
,
Wiley
, Hoboken, NJ.
23.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review of Experimental Investigations Into the Design, Performance and Optimization of the Savonius Rotor
,”
Proc. Inst. Mech. Eng. Part A
,
227
(
4
), pp.
528
542
.
24.
Talukdar
,
P. K.
,
Sardar
,
A.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2018
, “
Parametric Analysis of Model Savonius Hydrokinetic Turbines Through Experimental and Computational Investigations
,”
Energy Convers. Manage.
,
158
, pp.
36
49
.
25.
Chauvin
,
A.
, and
Benghrib
,
D.
,
1989
, “
Drag and Lift Coefficients Evolution of a Savonius Rotor
,”
Exp. Fluids
,
8
(
1–2
), pp.
118
120
.
26.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
050801
.
27.
Irabu
,
K.
, and
Roy
,
J. N.
,
2011
, “
Study of Direct Force Measurement and Characteristics on Blades of Savonius Rotor at Static State
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
653
659
.
28.
Jaohindy
,
P.
,
McTavish
,
S.
,
Garde
,
F.
, and
Bastide
,
A.
,
2013
, “
An Analysis of the Transient Forces Acting on Savonius Rotors With Different Aspect Ratios
,”
Renewable Energy
,
55
, pp.
286
295
.
29.
Roy
,
S.
, and
Ducoin
,
A.
,
2016
, “
Unsteady Analysis on the Instantaneous Forces and Moment Arms Acting on a Novel Savonius-Style Wind Turbine
,”
Energy Convers. Manage.
,
121
, pp.
281
296
.
30.
Alom
,
N.
,
Borah
,
B.
, and
Saha
,
U. K.
,
2018
, “
An Insight Into the Drag and Lift Characteristics of Modified Bach and Benesh Profiles of Savonius Rotor
,”
Energy Procedia
,
144
, pp.
50
56
.
31.
Alom
,
N.
,
Kolaparthi
,
S. C.
,
Gadde
,
S. C.
, and
Saha
,
U. K.
,
2016
, “
Aerodynamic Design Optimization of Elliptical-Bladed Savonius-Style Wind Turbine by Numerical Simulations
,”
ASME
Paper No. OMAE2016-55095.
32.
Altan
,
B. D.
,
Atilgan
,
M.
, and
Ozdamar
,
A.
,
2008
, “
An Experimental Study on Improvement of a Savonius Rotor Performance With Curtaining
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1673
1678
.
33.
Georgios
,
B.
, and
Athanassiadis
,
N.
,
1982
, “
On the Flow Field of the Savonius Rotor
,”
Wind Eng.
,
6
(
3
), pp.
140
148
.
34.
Mojola
,
O. O.
,
1985
, “
On the Aerodynamic Design of the Savonius Wind Mill Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
21
(
2
), pp.
223
231
.
35.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review on the Numerical Investigations Into the Design and Development of Savonius Wind Rotors
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
73
83
.
36.
Fujisawa
,
N.
,
1996
, “
Velocity Measurements and Numerical Calculations of Flow Fields in and Around Savonius Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
59
(
1
), pp.
39
50
.
37.
D'Allesandro
,
V.
,
Montelpare
,
S.
,
Ricci
,
R.
, and
Secchiaroli
,
A.
,
2010
, “
Unsteady Aerodynamics of a Savonius Wind Rotor: A New Computational Approach for the Simulation of Energy Performance
,”
Energy
,
35
(
8
), pp.
3349
3363
.
38.
Modi
,
V. J.
, and
Fernando
,
M. S. U. K.
,
1989
, “
On the Performance of the Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
111
(
1
), pp.
71
81
.
39.
Modi
,
V. J.
,
Roth
,
N. J.
, and
Fernando
,
M. S. U. K.
,
1984
, “
Optimum-Configuration Studies and Prototype Design of a Wind-Energy-Operated Irrigation System
,”
J. Wind Eng. Ind. Aerodyn.
,
16
(
1
), pp.
85
96
.
40.
Saha
,
U. K.
,
Thotla
,
S.
, and
Maity
,
D.
,
2008
, “
Optimum Design Configuration of Savonius Rotor Through Wind Tunnel Experiments
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
8–9
), pp.
1359
1375
.
41.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Computational Study to Assess the Influence of Overlap Ratio on Static Torque Characteristics of a Vertical Axis Wind Turbine
,”
Procedia Eng.
,
51
, pp.
694
702
.
42.
Alom
,
N.
, and
Saha
,
U. K.
,
2017
, “
Arriving at the Optimum Overlap Ratio for an Elliptical-Bladed Savonius Rotor
,”
ASME
Paper No. GT2017-64137.
43.
Banerjee
,
A.
,
Roy
,
S.
,
Mukherjee
,
P.
, and
Saha
,
U. K.
,
2014
, “
Unsteady Flow Analysis Around an Elliptic-Bladed Savonius-Style Wind Turbine
,”
ASME
Paper No. GTINDIA2014-8141.
44.
Kacprzak
,
K.
,
Liskiewicz
,
G.
, and
Sobczak
,
K.
,
2013
, “
Numerical Investigation of Conventional and Modified Savonius Wind Turbines
,”
Renewable Energy
,
60
, pp.
578
585
.
45.
Alakashi
,
A. M.
, and
Basuno
,
I. B.
,
2014
, “
Comparison Between Structured and Unstructured Grid Generation on Two Dimensional Flows Based on Finite Volume Method (FVM)
,”
Int. J. Min., Metall. Mech. Eng.
,
2
(
2
), pp.
97
103
.
46.
Abraham
,
J. P.
,
Plourde
,
B. D.
,
Mowry
,
G. S.
,
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
,
2012
, “
Summary of Savonius Wind Turbine Development and Future Applications for Small-Scale Power Generation
,”
J. Renewable Sustainable Energy
,
4
(
4
), p.
042703
.
47.
Zhang
,
B.
,
Song
,
B.
,
Mao
,
Z.
, and
Tian
,
W.
,
2017
, “
A Novel Wake Energy Reuse Method to Optimize the Layout for Savonius-Type Vertical Axis Wind Turbines
,”
Energy
,
121
, pp.
341
355
.
48.
Modi
,
V. J.
,
Roth
,
N. J.
, and
Fernando
,
M. S. U. K.
,
1990
, “
Unsteady Aerodynamics and Wake of the Savonius Wind Turbine: A Numerical Study
,”
J. Wind Eng. Ind. Aerodyn.
,
46–47
(
5
), pp.
811
816
.
49.
Plourde
,
B.
,
Abraham
,
J.
,
Mowry
,
G.
, and
Minkowycz
,
W.
,
2012
, “
Simulations of Three-Dimensional Vertical-Axis Turbines for Communications Applications
,”
Wind Eng.
,
36
(
4
), pp.
443
454
.
50.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
605
.
51.
Howell
,
R.
,
Qin
,
N.
,
Edwards
,
J.
, and
Durrani
,
N.
,
2010
, “
Wind Tunnel and Numerical Study of a Small Vertical Axis Wind Turbine
,”
Renewable Energy
,
35
(
2
), pp.
412
422
.
52.
Song
,
C.
,
Zheng
,
Y.
,
Zhao
,
Z.
,
Zhang
,
Y.
,
Li
,
C.
, and
Jiang
,
H.
,
2015
, “
Investigation of Meshing Strategies and Turbulence Models of Computational Fluid Dynamics Simulations of Vertical Axis Wind Turbines
,”
J. Renewable Sustainable Energy
,
7
(
3
), p.
033111
.
53.
Fujisawa
,
N.
,
1992
, “
On the Torque Mechanism of Savonius Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
40
(
3
), pp.
277
292
.
54.
Van Treuren
,
K. W.
,
2015
, “
Small-Scale Wind Turbine Testing in Wind Tunnels Under Low Reynolds Number Conditions
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051208
.
55.
Ohya
,
Y.
,
Miyazaki
,
J.
,
Göltenbott
,
U.
, and
Watanabe
,
K.
,
2017
, “
Power Augmentation of Shrouded Wind Turbines in a Multirotor System
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), pp.
51202
51212
.
56.
Emmanuel
,
B.
, and
Jun
,
W.
,
2011
, “
Numerical Study of a Six-Bladed Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
044503
.
57.
Alom
,
N.
,
Kumar
,
N.
, and
Saha
,
U. K.
,
2017
, “
Aerodynamic Performance of an Elliptical-Bladed Savonius Rotor Under Influence Number of Blades and Shaft
,”
ASME
Paper No. GTINDIA2017-4554.
58.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Performance Evaluation of Vent-Augmented Elliptical-Bladed Savonius Rotors by Numerical Simulation and Wind Tunnel Experiments
,”
Energy
,
152
, pp.
277
290
.
59.
Roy
,
S.
, and
Saha
,
U. K.
,
2014
, “
An Adapted Blockage Factor Correlation Approach in Wind Tunnel Experiments of a Savonius-Style Wind Turbine
,”
Energy Convers. Manage.
,
86
, pp.
418
427
.
60.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
, pp.
250
258
.
61.
Kline
,
S. J.
,
1985
, “
The Purposes of Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
153
160
.
You do not currently have access to this content.