In order to lessen the computational time in fractured oil reservoir simulations, all fractures are usually assumed to be as one equivalent fracture at the center or around the model. This, specially, has applications in industrial engineering software, where this assumption applies. In this study, using two general contradictory examples, it is shown that ignoring a fracture network and assuming an equivalent single-fracture has no logical justification and results in a considerable error. The effect of fracture aperture on composition distribution of a binary and a ternary mixture was also investigated. These mixtures were C1 (methane)/n-C4 (normal-butane) and C1 (methane)/C2 (ethane)/n-C4 (normal-butane), which were under diffusion and natural convection. Governing equations were numerically solved using matlab. One of the main relevant applications of this study is where permeability and temperature gradient are the key difference between reservoirs. Compositional distribution from this study could be used to estimate initial oil in place. Using this study, one can find the optimum permeability, namely the permeability at which the maximum species separation happens, and the threshold permeability (or fracture aperture), after which the convection imposes its effect on composition distribution. It is found that the threshold permeability is not constant from reservoir to reservoir. Also, one can find that full mixing happens in the model, namely heavy and light densities of top and bottom mix up together in the model. Furthermore, after maximum separation point, convection causes unification of components.

References

References
1.
Van Golf-Racht
,
T.
,
1996
, “
Naturally-Fractured Carbonate Reservoirs
,”
Developments in Petroleum Science
,
Elsevier
, New York, pp.
683
771
.
2.
Warren
,
J.
, and
Root
,
P. J.
,
1963
, “
The Behavior of Naturally Fractured Reservoirs
,”
SPE J.
,
3
(
3
), pp.
245
255
.
3.
Kim
,
J. G.
, and
Deo
,
M. D.
,
2000
, “
Finite Element, Discrete‐Fracture Model for Multiphase Flow in Porous Media
,”
AIChE J.
,
46
(
6
), pp.
1120
1130
.
4.
Karimi-Fard
,
M.
,
Durlofsky
,
L. J.
, and
Aziz
,
K.
,
2003
, “
An Efficient Discrete Fracture Model Applicable for General Purpose Reservoir Simulators
,”
SPE Reservoir Simulation Symposium
, Houston, TX, Feb. 3–5, Paper No.
SPE-79699-MS
.
5.
Zhang
,
M.
, and
Ayala
,
L. F.
,
2018
, “
A General Boundary Integral Solution for Fluid Flow Analysis in Reservoirs With Complex Fracture Geometries
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052907
.
6.
Pruess
,
K.
, and
Narasimhan
,
T.
,
1982
, “
A Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media
,”
SPE J.
,
2
(
1
), pp.
14
26
.
7.
Wu
,
Y.-S.
, and
Pruess
,
K.
,
1986
, “
A Multiple-Porosity Method for Simulation of Naturally Fractured Petroleum Reservoirs
,”
SPE Reservoir Eng.
,
3
(
1
), pp.
327
336
.
8.
Obinna
,
E. D.
, and
Hassan
,
D.
,
2016
, “
Characterizing Tight Oil Reservoirs With Dual- and Triple-Porosity Models
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032801
.
9.
Al Ghamdi
,
B. N.
,
2017
, “
Evaluation of Transport Properties Effect on the Performance of Gas-Condensate Reservoirs Using Compositional Simulation
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032910
.
10.
Ahn
,
C. H.
,
Dilmore
,
R.
, and
Wang
,
J. Y.
,
2017
, “
Modeling of Hydraulic Fracture Propagation in Shale Gas Reservoirs: A Three-Dimensional, Two-Phase Model
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012903
.
11.
Nikpoor
,
M.
,
Kharrat
,
R.
, and
Chen
,
Z.
,
2011
, “
Modeling of Compositional Grading and Plus Fraction Properties Changes With Depth in Petroleum Reservoirs
,”
Pet. Sci. Technol.
,
29
(
9
), pp.
914
923
.
12.
Ghorayeb
,
K.
,
Firoozabadi
,
A.
, and
Anraku
,
T.
,
2003
, “
Interpretation of the Unusual Fluid Distribution in the Yufutsu Gas-Condensate Field
,”
SPE J.
,
8
(
2
), pp.
114
123
.
13.
Temeng
,
K.
,
Al-Sadeg
,
M.
, and
Al-Mulhim
,
W.
,
1998
, “
Compositional Grading in the Ghawar Khuff Reservoirs
,”
SPE Annual Technical Conference and Exhibition
, New Orleans, LA, Sept. 27–30, Paper No.
SPE-49270-MS
.
14.
Saidi
,
A. M.
,
1987
,
Reservoir Engineering of Fractured Reservoirs (Fundamental and Practical Aspects)
, Total S.A., Courbevoie, France.
15.
Metcalfe
,
R.
,
Vogel
,
J.
, and
Morris
,
R.
,
1988
, “
Compositional Gradients in the Anschutz Ranch East Field
,”
SPE Reservoir Eng.
,
3
(
3
), p.
8
.
16.
Neveux
,
A.
,
Sakthikumar
,
S.
, and
Nolray
,
J.
,
1988
, “
Delineation and Evaluation of a North Sea Reservoir Containing Near-Critical Fluids
,”
SPE Reservoir Eng.
,
3
(
3
), pp.
842
848
.
17.
Hamoodi
,
A.
,
Abed
,
A.
, and
Firoozabadi
,
A.
,
1996
, “
Compositional Modeling of Two-Phase Hydrocarbon Reservoirs
,”
Abu Dhabi International Petroleum Exhibition and Conference
, Abu Dhabi, United Arab Emirates, Oct. 13–16, Paper No.
SPE-36244-MS
.
18.
Lee
,
S.-T.
, and
Chaverra
,
M.
,
1998
, “
Modelling and Interpretation of Condensate Banking for the Near Critical Cupiagua Field
,”
SPE Annual Technical Conference and Exhibition
, New Orleans, LA, Sept. 27–30, Paper No.
SPE-49265-MS
.
19.
Papi
,
A.
,
Mohebbi
,
A.
,
Kazemzadeh
,
Y.
, and
Eshraghi
,
S.
,
2016
, “
Impact of Natural Convection and Diffusion on Variation of Oil Composition Through a Fractured Porous Medium
,”
Sci. Iran.
,
23
(
6
), pp.
2811
2819
.
20.
Nield
,
D. A.
, and
Bejan
,
A.
,
2006
,
Convection in Porous Media
,
Springer
, New York.
21.
Riley
,
M. F.
, and
Firoozabadi
,
A.
,
1998
, “
Compositional Variation in Hydrocarbon Reservoirs With Natural Convection and Diffusion
,”
AIChE J.
,
44
(
2
), pp.
452
464
.
22.
Ghorayeb
,
K.
, and
Firoozabadi
,
A.
,
2001
, “
Features of Convection and Diffusion in Porous Media for Binary Systems
,”
J. Can. Pet. Technol.
,
40
(
2
), pp.
21
28
.
23.
De Groot
,
S.
, and
Mazur
,
P.
,
1984
,
Non-Equilibrium Thermodynamics
,
North-Holland
,
Amsterdam, The Netherlands
.
24.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2002
,
Transport Phenomena
,
Wiley
,
New York
.
25.
Shukla
,
K.
, and
Firoozabadi
,
A.
,
1998
, “
A New Model of Thermal Diffusion Coefficients in Binary Hydrocarbon Mixtures
,”
Ind. Eng. Chem. Res.
,
37
(
8
), pp.
3331
3342
.
26.
Firoozabadi
,
A.
,
Ghorayeb
,
K.
, and
Shukla
,
K.
,
2000
, “
Theoretical Model of Thermal Diffusion Factors in Multicomponent Mixtures
,”
AIChE J.
,
46
(
5
), pp.
892
900
.
27.
Nasrabadi
,
H.
,
Ghorayeb
,
K.
, and
Firoozabadi
,
A.
,
2006
, “
Two-Phase Multicomponent Diffusion and Convection for Reservoir Initialization
,”
SPE Reservoir Eval. Eng.
,
9
(
5
), pp.
530
542
.
28.
Nasrabadi
,
H.
,
Hoteit
,
H.
, and
Firoozabadi
,
A.
,
2007
, “
An Analysis of Species Separation in a Thermogravitational Column Filled With a Porous Medium
,”
Transp. Porous Media
,
67
(
3
), pp.
473
486
.
29.
Ghorayeb
,
K.
, and
Firoozabadi
,
A.
,
2000
, “
Molecular, Pressure, and Thermal Diffusion in Nonideal Multicomponent Mixtures
,”
AIChE J.
,
46
(
5
), pp.
883
891
.
30.
Ghorayeb
,
K.
, and
Firoozabadi
,
A.
,
2000
, “
Modeling Multicomponent Diffusion and Convection in Porous Media
,”
SPE J.
,
5
(
2
), pp.
158
171
.
31.
Sakonidou
,
E.
,
Van den Berg
,
H.
,
Ten Seldam
,
C.
, and
Sengers
,
J.
,
1998
, “
The Thermal Conductivity of an Equimolar Methane–Ethane Mixture in the Critical Region
,”
J. Chem. Phys.
,
109
(
2
), pp.
717
736
.
32.
Rutherford
,
W.
, and
Roof
,
J.
,
1959
, “
Thermal Diffusion in Methane-n-Butane Mixtures in the Critical Region
,”
J. Phys. Chem.
,
63
(
9
), pp.
1506
1511
.
33.
Belery
,
P.
, and
Da Silva
,
F.
,
1990
, “
Gravity and Thermal Diffusion in Hydrocarbon Reservoirs
,” Third Chalk Research Program, p.
12
.
34.
Larre
,
J.
,
Platten
,
J. B.
, and
Chavepeyer
,
G.
,
1997
, “
Soret Effects in Ternary Systems Heated From Below
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
545
555
.
35.
Krupiczka
,
R.
, and
Rotkegel
,
A.
,
1997
, “
An Experimental Study of Diffusional Cross-Effects in Multicomponent Mass Transfer
,”
Chem. Eng. Sci.
,
52
(
6
), pp.
1007
1017
.
36.
Ghorayeb
,
K.
, and
Firoozabadi
,
A.
,
2000
, “
Numerical Study of Natural Convection and Diffusion in Fractured Porous Media
,”
SPE J.
,
5
(
1
), pp.
12
20
.
37.
Hofmann
,
H.
,
Babadagli
,
T.
, and
Zimmermann
,
G.
,
2014
, “
Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042905
.
38.
Evans
,
R.
, and
Lekia
,
S.
,
1990
, “
A Reservoir Simulation Study of Naturally Fractured Lenticular Tight Gas Sand Reservoirs
,”
ASME J. Energy Resour. Technol.
,
112
(
4
), pp.
231
238
.
39.
Trivedi
,
J.
, and
Babadagli
,
T.
,
2009
, “
Experimental and Numerical Modeling of the Mass Transfer Between Rock Matrix and Fracture
,”
Chem. Eng. J.
,
146
(
2
), pp.
194
204
.
40.
Hatiboglu
,
C. U.
, and
Babadagli
,
T.
,
2010
, “
Experimental and Visual Analysis of Diffusive Mass Transfer Between Matrix and Fracture Under Static Conditions
,”
J. Pet. Sci. Eng.
,
74
(
1–2
), pp.
31
40
.
41.
Jamili
,
A.
,
Willhite
,
G. P.
, and
Green
,
D.
,
2011
, “
Modeling Gas-Phase Mass Transfer Between Fracture and Matrix in Naturally Fractured Reservoirs
,”
SPE J.
,
16
(
4
), pp.
795
811
.
42.
Hoteit
,
H.
,
2013
, “
Modeling Diffusion and Gas–Oil Mass Transfer in Fractured Reservoirs
,”
J. Pet. Sci. Eng.
,
105
, pp.
1
17
.
43.
Woods
,
A. W.
, and
Linz
,
S. J.
,
1992
, “
Natural Convection and Dispersion in a Tilted Fracture
,”
J. Fluid Mech.
,
241
(
1
), pp.
59
74
.
44.
Kaydani
,
H.
, and
Mohebbi
,
A.
,
2017
, “
Experimental and Numerical Study of the Onset of Transient Natural Convection in a Fractured Porous Medium
,”
Transp. Porous Media
,
116
(
2
), pp.
923
939
.
45.
Osholake
,
T.
,
Wang
,
J. Y.
, and
Ertekin
,
T.
,
2013
, “
Factors Affecting Hydraulically Fractured Well Performance in the Marcellus Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013402
.
46.
Li
,
M.
, and
Lior
,
N.
,
2015
, “
Analysis of Hydraulic Fracturing and Reservoir Performance in Enhanced Geothermal Systems
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
041203
.
47.
Wang
,
W.
,
Shahvali
,
M.
, and
Su
,
Y.
,
2017
, “
Analytical Solutions for a Quad-Linear Flow Model Derived for Multistage Fractured Horizontal Wells in Tight Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012905
.
48.
Seales
,
M. B.
,
Ertekin
,
T.
, and
Wang
,
J. Y.
,
2017
, “
Recovery Efficiency in Hydraulically Fractured Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042901
.
49.
Jiang
,
Y.
, and
Dahi-Taleghani
,
A.
,
2018
, “
Modified Extended Finite Element Methods for Gas Flow in Fractured Reservoirs: A Pseudo-Pressure Approach
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
073101
.
50.
Rui
,
Z.
,
Guo
,
T.
,
Feng
,
Q.
,
Qu
,
Z.
,
Qi
,
N.
, and
Gong
,
F.
,
2018
, “
Influence of Gravel on the Propagation Pattern of Hydraulic Fracture in the Glutenite Reservoir
,”
J. Pet. Sci. Eng.
,
165
, pp.
627
639
.
51.
He
,
Y.
,
Cheng
,
S.
,
Li
,
S.
,
Huang
,
Y.
,
Qin
,
J.
,
Hu
,
L.
, and
Yu
,
H.
,
2017
, “
A Semianalytical Methodology to Diagnose the Locations of Underperforming Hydraulic Fractures Through Pressure-Transient Analysis in Tight Gas Reservoir
,”
SPE J.
,
22
(
3
), pp.
924
939
.
52.
Gonzalez-Chavez
,
M.
,
Dahi Taleghani
,
A.
, and
Olson
,
J. E.
,
2015
, “
A Cohesive Model for Modeling Hydraulic Fractures in Naturally Fractured Formations
,”
SPE Hydraulic Fracturing Technology Conference
, The Woodlands, TX, Feb. 3–5, SPE Paper No.
SPE-173384-MS
.
53.
Peng
,
X.
,
Liang
,
B.
,
Du
,
Z.
, and
Wang
,
M.
,
2017
, “
Practical Simulation of Multi-Porosity Reservoirs Through Existing Reservoir Simulator
,”
J. Pet. Sci. Eng.
,
151
, pp.
409
420
.
54.
Chandrasekhar
,
S.
,
2013
,
Hydrodynamic and Hydromagnetic Stability
,
Courier Corporation
, New York.
55.
Price
,
H.
, and
Coats
,
K.
,
1974
, “
Direct Methods in Reservoir Simulation
,”
Soc. Pet. Eng. J.
,
14
(
3
), pp.
295
308
.
56.
El-Maâtaoui
,
M.
,
1986
, “
Consequences of the Porous Medium Thermo Diffusion on the Hydrolysis Solutions of Ferric Chloride and Hydrocarbon Migration in Mixtures of N-Alkanes in Crude Oil: Geochemical Implications
,” Ph.D. thesis, University of Paul Sabatier, Toulouse, France.
57.
Moorthy
,
M.
, and
Senthilvadivu
,
K.
,
2011
, “
Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection From Horizontal Surface in Porous Medium
,”
WEAS Trans. Math.
,
10
(
6
), pp.
210
218
. https://dl.acm.org/citation.cfm?id=2037118
58.
Rashidi
,
F.
, and
Bahrami
,
A.
,
2000
, “
Mathematical Modeling of Onset of Convection in a Porous Layer With Viscosity Variation
,”
J. Therm. Sci.
,
9
(
2
), p.
141
.
59.
Bahadori
,
F.
, and
Rezvantalab
,
S.
,
2014
, “
Effects of Temperature and Concentration Dependent Viscosity on Onset of Convection in Porous Media
,”
J. Chem. Technol. Metall.
,
49
(
6
), pp.
541
544
. http://dl.uctm.edu/journal/node/j2014-6/3-Bahadori-541-544.pdf
60.
Murthy
,
P. V. S. N.
, and
El-Amin
,
M.
,
2011
, “
Thermo-Diffusion Effect on Free Convection Heat and Mass Transfer in a Thermally Linearly Stratified Non-Darcy Porous Media
,”
Open Transp. Phenom. J.
,
3
(
1
), pp.
49
55
.
You do not currently have access to this content.