The paper presents physicochemical properties of pyrolysis oil (PO) blends obtained from pyrolysis of rubber and spent tires mixed with selected heavy fuel oil (HFO) and the effect of PO properties on physicochemical properties of the final heavy heating oil. On the basis of physicochemical properties determinations, one sample of PO was selected, which was characterized by the best properties from the point of view of technological application. In the next step, physicochemical properties for the selected sample of heavy heating fuel oil consisting of 25% PO and 75% HFO were determined. It was found that the most important property of tire-derived PO is the content of gasoline, i.e., light hydrocarbons with a boiling point below 180 °C, which determine the ignition temperature of the obtained fuel blends. This property determines also the amount of PO that can be added to HFO, on the order of 30 wt % and more. The lower content of light hydrocarbons, the greater the amount of PO can be used to compose HFO. A positive aspect of the use of tire derive PO for the composing of heavy heating fuel is about a threefold decrease in kinematic viscosity, lowering the flow temperature and a significant reduction in ash content. Other properties of the modified HFO remained virtually unchanged and the fuel obtained as a result of blending meets the requirements of the relevant standard.

References

References
1.
Sulman
,
E. M.
,
Kosivtsov
,
Y. Y.
,
Sidorov
,
A. I.
,
Stepacheva
,
A. A.
, and
Y. V. Catalytic
,
L.
,
2016
, “
Co-Pyrolysis of Polymeric Waste and Biomass as the Method for Energy and Ecology Problems Solution
,”
Int. J. Energy Environ.
,
10
, pp.
100
104
.http://www.naun.org/main/NAUN/energyenvironment/2016/a282011-165.pdf
2.
Anbazhagan
,
P.
, and
Manohar
,
D. R.
,
2013
, “
Energy Absorption Capacity and Shear Strength Characteristics of Waste Tire Crumbs and Sand Mixtures
,”
Int. J. Geotech. Earthquake Eng.
,
6
(
1
), pp.
28
49
.
3.
Boxiong
,
S.
,
Wu
,
C.
,
Wang
,
R.
,
Guo
,
B.
, and
Liang
,
C.
,
2006
, “
Pyrolysis of Scrap Tyres With Zeolites USY
,”
J. Hazard. Mater.
,
137
(
2
), pp.
1065
1073
.
4.
Ding
,
K.
,
Zhong
,
Z.
,
Zhang
,
B.
,
Wang
,
J.
,
Min
,
A.
, and
Ruan
,
R.
,
2016
, “
Catalytic Pyrolysis of Waste Tire to Produce Valuable Aromatic Hydrocarbons: An Analytical Py-GC/MS Study
,”
J. Anal. Appl. Pyrolysis
,
122
, pp.
55
63
.
5.
Sienkiewicz
,
M.
,
Janik
,
H.
,
Borze˛dowska-Labuda
,
K.
, and
Kucińska-Lipka
,
J.
,
2017
, “
Environmentally Friendly Polymer-Rubber Composites Obtained From Waste Tyres: A Review
,”
J. Cleaner Prod.
,
147
, pp.
560
571
.
6.
Zhang
,
Y.
, and
Williams
,
P. T.
,
2016
, “
Carbon Nanotubes and Hydrogen Production From the Pyrolysis Catalysis or Catalytic-Steam Reforming of Waste Tyres
,”
J. Anal. Appl. Pyrolysis
,
122
, pp.
490
501
.
7.
ETRMA
,
2011
,
End of Life Tyres: A Valuable Resource With Growing Potential
,
European Tyre and Rubber Manufacturers Association
,
Brussels, Belgium
.
8.
Kan
,
T.
,
Strezov
,
V.
, and
Evans
,
T.
,
2017
, “
Fuel Production From Pyrolysis of Natural and Synthetic Rubbers
,”
Fuel
,
191
, pp.
403
410
.
9.
Diez
,
C.
,
Sanchez
,
M. E.
,
Haxaire
,
P.
,
Martinez
,
O.
, and
Moran
,
A.
,
2005
, “
Pyrolysis of Tyres: A Comparison of the Results From a Fixed-Bed Laboratory Reactor and a Pilot Plant (Rotatory Reactor)
,”
J. Anal. Appl. Pyrolysis
,
74
(
1–2
), pp.
254
258
.
10.
Parvez
,
A. M.
, and
Wu
,
T.
,
2017
, “
Characteristics and Interactions Between Coal and Carbonaceous Wastes During Co-Combustion
,”
J. Energy Inst.
,
90
(
1
), pp.
12
20
.
11.
Duo
,
W.
,
Karidio
,
I.
,
Cross
,
L.
, and
Ericksen
,
B.
,
2006
, “
Combustion and Emission of a Hog Fuel Fluidized Bed Boiler With Addition of Tire Derived Fuel
,”
ASME J. Energy Resour. Technol.
,
129
(
1
), pp.
42
49
.
12.
Donatelli
,
A.
,
Iovane
,
P.
, and
Molino
,
A.
,
2010
, “
High Energy Syngas Production by Waste Tyres Steam Gasification in a Rotary Kiln Pilot Plant. Experimental and Numerical Investigations
,”
Fuel
,
89
(
10
), pp.
2721
2728
.
13.
Luo
,
S.
, and
Feng
,
Y.
,
2017
, “
The Production of Fuel Oil and Combustible Gas by Catalytic Pyrolysis of Waste Tire Rusing Waste Heat of Blast—Furnace Slag
,”
Energy Convers. Manage.
,
136
, pp.
27
35
.
14.
Zhang
,
Y.
,
Zhao
,
W.
,
Li
,
B.
, and
Xie
,
G.
,
2018
, “
Microwave-Assisted Pyrolysis of Biomass for Bio-Oil Production: A Review of the Operation Parameters
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
040802
.
15.
Berrueco
,
C.
,
Esperanza
,
E.
,
Mastral
,
F. J.
,
Ceamanos
,
J.
, and
Garcia-Bacaicoa
,
P.
,
2005
, “
Pyrolysis of Waste Tyres in an Atmospheric Static-Bed Batch Reactor: Analysis of the Gases Obtained
,”
J. Anal. Appl. Pyrolysis
,
74
(
1–2
), pp.
245
253
.
16.
Boxiong
,
S.
,
Chunfei
,
W.
,
Cai
,
L.
,
Binbin
,
G.
, and
Rui
,
W.
,
2007
, “
Pyrolysis of Waste Tyres: The Influence of USY Catalyst/tyre Ratio on Products
,”
J. Anal. Appl. Pyrolysis
,
78
(
2
), pp.
243
249
.
17.
Williams
,
P.
, and
Brindle
,
A.
,
2003
, “
Aromatic Chemicals From the Catalytic Pyrolysis of Scrap Tyres
,”
J. Anal. Appl. Pyrolysis
,
67
(
1
), pp.
143
164
.
18.
Quek
,
A.
, and
Balasubramanian
,
R.
,
2013
, “
Liquefaction of Waste Tires by Pyrolysis for Oil and Chemicals—A Review
,”
J. Anal. Appl. Pyrolysis
,
101
, pp.
1
16
.
19.
Baran
,
P.
,
Krzak
,
M.
,
Zare˛bska
,
K.
,
Szczurowski
,
J.
, and
W. A. Adsorption of
,
Ż.
,
2016
, “
Sulfur (IV) Oxide on Activated Carbon From Pyrolysis of Waste Tyres
,”
Przem. Chem.
,
95
(
6
), pp.
1164
1166
.
20.
Żmuda
,
W. A.
,
Grzywacz
,
P.
,
Wojciechowski
,
A.
,
Doliński
,
A.
, and
Krzak
,
M.
,
2016
, “
Abatement of Emissions of Sulfur Oxides From Combustion of a Fuel Based on Waste Tire Char
,”
Przem. Chem.
,
95
(
5
), pp.
975
977
.
21.
Islan
,
S.
, and
Dincer
,
I.
,
2018
, “
A Comparative Study of Syngas Production From Two Types of Biomass Feedstocks With Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092002
.
22.
Williams
,
P. T.
,
2013
, “
Pyrolysis of Waste Tyres: A Review
,”
Waste Manage.
,
33
(
8
), pp.
1714
1728
.
23.
Kordoghli
,
S.
,
Paraschiv
,
M.
,
Tazerout
,
M.
,
Khiari
,
B.
, and
Zagrouba
,
F.
,
2017
, “
Novel Catalytic Systems for Waste Tires Pyrolysis: Optimization of Gas Fraction
,”
ASME J. Energy Resour. Technol.
,
139
(3), p.
032203
.
24.
Guo
,
K.
,
Li
,
H.
, and
Zhixin
,
Y.
,
2016
, “
In-Situ Heavy and Extra-Heavy Oil Recovery: A Review
,”
Fuel
,
185
, pp.
886
902
.
25.
Storm
,
D. A.
,
McKeon
,
R. J.
,
McKinzie
,
H. L.
, and
Redus
,
C. L.
,
1999
, “
Drag Reduction in Heavy Oil
,”
ASME J. Energy Resour. Technol.
,
121
(
3
), pp.
145
148
.
26.
Ali
,
M. F.
, and
Abbas
,
S.
,
2006
, “
A Review of Methods for the Demetallization of Residual Fuel Oils
,”
Fuel Process. Technol.
,
87
(
7
), pp.
573
584
.
27.
Lu
,
D. Y.
, and
Zhang
,
J. Q.
,
2002
, “
Combustion Characteristics of Heavy Liquid Fuels in a Bubbling Fluidized Bed
,”
ASME J. Energy Resour. Technol.
,
124
(
1
), pp.
40
46
.
28.
Obrycki
,
T. Z.
,
Sztaba
,
B.
,
Jaszek
,
P. W.
, and
Zmuda
,
W. A.
, “
A Method and a Reactor for Thermal Pyrolysis of Rubber Materials
,” Patent No. EP3156473A1.
29.
Budzyń
,
S.
,
Iwanicki
,
V.
,
Sumara
,
A.
,
Zmuda
,
W.
, and
D'emal
,
C.
,
2016
, “
Rubber Granulate Conversion Process for Producing a Semi-Active Carbonized Substance and a Plasticizer
,” U.S. Patent No. US009296952B2, 29.03.
You do not currently have access to this content.