Intake generated flows are known to have a fundamental influence on the combustion both in spark ignition (SI) and compression ignition engines. This study experimentally investigated the tumble flow structures inside a cylinder of gasoline direct injection (GDI) engine utilizing a stereoscopic time-resolved particle image velocimetry (PIV). The experiments were conducted in a GDI engine head for a number of fixed valve lifts and 150 mmH2O pressure difference across the intake valves. A tumble flow analysis was carried out considering different vertical tumble planes. In addition, the proper orthogonal decomposition (POD) identification technique was applied on the PIV data in order to spatially analyze the structures embedded in the instantaneous velocity data sets. The results showed that the flow was dominated by a strong tumble motion in the middle of cylinder at high valve lifts (8–10 mm). Moreover, it is worth pointing out that, because of the complexity of the flow at the high valve lifts, the flow energy was distributed over a higher number of POD modes. This was confirmed by the need of a higher number of POD modes needed to reconstruct the original velocity field to the same level of fidelity.

References

References
1.
Cesarani
,
G.
,
Badaloni
,
C.
,
Gariazzo
,
C.
,
Stafoggia
,
M.
,
Sozzi
,
R.
,
Davoli
,
M.
, and
Forastiere
,
F.
,
2013
, “
Long-Term Exposure to Urban Air Pollution and Mortality in a Cohort of More Than a Million Adults in Rome
,”
Environ. Health Perspect.
,
121
(
3
), p.
324
.
2.
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2015
, “
Combustion and Emission Characterization of n-Butanol Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
011101
.
3.
Zhao
,
F.
,
Lai
,
M.-C.
, and
Harrington
,
D. L.
,
1999
, “
Automotive Spark-Ignited Direct-Injection Gasoline Engines
,”
Prog. Energy Combust. Sci.
,
25
(
5
), pp.
437
562
.
4.
Kume
,
T.
,
Tanada
,
H.
,
Iida
,
K.
,
Murakami
,
N.
, and
Ando
,
H.
,
1996
, “
Combustion Control Technologies for Direct Injection SI Engines
,”
JSAE Rev.
,
4
(
17
), p.
435
.
5.
Spiegel
,
L.
, and
Spicher
,
U.
,
1992
, “
Mixture Formation and Combustion in a Spark Ignition Engine With Direct Fuel Injection
,”
SAE
Paper No. 920521.
6.
Preussner
,
C.
,
Döring
,
C.
,
Fehler
,
S.
, and
Kampmann
,
S.
,
1998
, “
GDI: Interaction Between Mixture Preparation, Combustion System and Injector Performance
,”
SAE
Paper No. 980498.
7.
Fraidl
,
G.
,
Piock
,
W.
, and
Wirth
,
M.
,
1996
, “
Gasoline Direct Injection: Actual Trends and Future Strategies for Injection and Combustion Systems
,”
SAE
Paper No. 0148-7191.
8.
Krishna
,
B. M.
, and
Mallikarjuna
,
J.
,
2010
, “
Comparative Study of In-Cylinder Tumble Flows in an Internal Combustion Engine Using Different Piston Shapes—An Insight Using Particle Image Velocimetry
,”
Exp. Fluids
,
48
(
5
), pp.
863
874
.
9.
Lee
,
J.
,
Yamakawa
,
M.
,
Isshiki
,
S.
, and
Nishida
,
K.
,
2002
, “
An Analysis of Droplets and Ambient Air Interaction in a DI Gasoline Spray Using LIF-PIV Technique
,”
SAE
Paper No. 01-0743.
10.
Krishna
,
B. M.
, and
Mallikarjuna
,
J.
,
2010
, “
Characterization of Flow Through the Intake Valve of a Single Cylinder Engine Using Particle Image Velocimetry
,”
J. Appl. Fluid Mech.
,
3
(
2
), pp.
23
32
.
11.
Krishna
,
A. S.
,
Mallikarjuna
,
J.
, and
Kumar
,
D.
,
2016
, “
Effect of Engine Parameters on In-Cylinder Flows in a Two-Stroke Gasoline Direct Injection Engine
,”
Appl. Energy
,
176
, pp.
282
294
.
12.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2006
, “
Diesoline, Diesohol, and Diesosene Fuelled HCCI Engine Development
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052212
.
13.
Wotton
,
C. R. N.
,
1993
, “
Steady State Flow Bench Port Performance Measurement and Analysis Techniques
,” Ricardo plc, Shoreham-by-Sea, UK, Technical Report No. DP93/618-0704.
14.
Zhang
,
Z.
,
Zhang
,
H.
,
Wang
,
T.
, and
Jia
,
M.
,
2014
, “
Effects of Tumble Combined With EGR (Exhaust Gas Recirculation) on the Combustion and Emissions in a Spark Ignition Engine at Part Loads
,”
Energy
,
65
, pp.
18
24
.
15.
Bari
,
S.
, and
Saad
,
I.
,
2013
, “
CFD Modelling of the Effect of Guide Vane Swirl and Tumble Device to Generate Better In-Cylinder Air Flow in a CI Engine Fueled by Biodiesel
,”
Comput. Fluids
,
84
, pp.
262
269
.
16.
Buhl
,
S.
,
Gleiss
,
F.
,
Köhler
,
M.
,
Hartmann
,
F.
,
Messig
,
D.
,
Brücker
,
C.
, and
Hasse
,
C.
,
2017
, “
A Combined Numerical and Experimental Study of the 3D Tumble Structure and Piston Boundary Layer Development During the Intake Stroke of a Gasoline Engine
,”
Flow Turbul. Combust.
,
98
(
2
), pp.
579
600
.
17.
Wang
,
T.
,
Liu
,
D.
,
Tan
,
B.
,
Wang
,
G.
, and
Peng
,
Z.
,
2015
, “
An Investigation Into In-Cylinder Tumble Flow Characteristics With Variable Valve Lift in a Gasoline Engine
,”
Flow Turbul. Combust.
,
94
(
2
), pp.
285
304
.
18.
Clenci
,
A. C.
,
Iorga-Simăn
,
V.
,
Deligant
,
M.
,
Podevin
,
P.
,
Descombes
,
G.
, and
Niculescu
,
R.
,
2014
, “
A CFD (Computational Fluid Dynamics) Study on the Effects of Operating an Engine With Low Intake Valve Lift at Idle Corresponding Speed
,”
Energy
,
71
, pp.
202
217
.
19.
Wang
,
T.
,
Li
,
W.
,
Jia
,
M.
,
Liu
,
D.
,
Qin
,
W.
, and
Zhang
,
X.
,
2015
, “
Large-Eddy Simulation of In-Cylinder Flow in a DISI Engine With Charge Motion Control Valve: Proper Orthogonal Decomposition Analysis and Cyclic Variation
,”
Appl. Therm. Eng.
,
75
, pp.
561
574
.
20.
Li
,
Y.
,
Zhao
,
H.
,
Peng
,
Z.
, and
Ladommatos
,
N.
,
2001
, “
Analysis of Tumble and Swirl Motions in a Four-Valve SI Engine
,”
SAE
Paper No. 01-3555.
21.
Fu
,
J.
,
Zhu
,
G.
,
Zhou
,
F.
,
Liu
,
J.
,
Xia
,
Y.
, and
Wang
,
S.
,
2016
, “
Experimental Investigation on the Influences of Exhaust Gas Recirculation Coupling With Intake Tumble on Gasoline Engine Economy and Emission Performance
,”
Energy Convers. Manage.
,
127
, pp.
424
436
.
22.
Alsurakji
,
I. H.
,
Al-Sarkhi
,
A.
,
Habib
,
M.
, and
Badr
,
H. M.
,
2018
, “
An Experimental Study on the Performance of Drag-Reducing Polymers in Single- and Multiphase Horizontal Flow Using Particle Image Velocimetry
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052005
.
23.
Reuss
,
D. L.
,
2000
, “
Cyclic Variability of Large-Scale Turbulent Structures in Directed and Undirected IC Engine Flows
,”
SAE
Paper No. 2000-01-0246.
24.
Funk
,
C.
,
Sick
,
V.
,
Reuss
,
D. L.
, and
Dahm
,
W. J.
,
2002
, “
Turbulence Properties of High and Low Swirl In-Cylinder Flows
,”
SAE
Paper No. 01-2841.
25.
Voisine
,
M.
,
Thomas
,
L.
,
Borée
,
J.
, and
Rey
,
P.
,
2011
, “
Spatio-Temporal Structure and Cycle to Cycle Variations of an In-Cylinder Tumbling Flow
,”
Exp. Fluids
,
50
(
5
), pp.
1393
1407
.
26.
Zeng
,
W.
,
Sjöberg
,
M.
,
Reuss
,
D. L.
, and
Hu
,
Z.
,
2017
, “
High-Speed PIV, Spray, Combustion Luminosity, and Infrared Fuel-Vapor Imaging for Probing Tumble-Flow-Induced Asymmetry of Gasoline Distribution in a Spray-Guided Stratified-Charge DISI Engine
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3459
3466
.
27.
El-Adawy
,
M.
,
Heikal
,
M.
,
Aziz
,
A. R. A.
,
Siddiqui
,
M.
, and
Wahhab
,
H. A. A.
,
2017
, “
Experimental Study on an IC Engine In-Cylinder Flow Using Different Steady-State Flow Benches
,”
Alexandria Eng. J.
,
56
(
4
), pp.
727
736
.
28.
Saha
,
P.
,
Biswas
,
G.
,
Mandal
,
A.
, and
Sarkar
,
S.
,
2017
, “
Investigation of Coherent Structures in a Turbulent Channel With Built-In Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
104
, pp.
178
198
.
29.
Chen
,
H.
,
Xu
,
M.
, and
Hung
,
D. L.
,
2014
, “
Analyzing In-Cylinder Flow Evolution and Variations in a Spark-Ignition Direct-Injection Engine Using Phase-Invariant Proper Orthogonal Decomposition Technique
,”
SAE
Paper No. 2014-04-01.
30.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,” Atmospheric Turbulence and Radio Wave Propagation, Nauka, Moskow, pp. 166–178.
31.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures—I: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
32.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.
33.
Bakewell
,
H. P.
, Jr.
, and
Lumley
,
J. L.
,
1967
, “
Viscous Sublayer and Adjacent Wall Region in Turbulent Pipe Flow
,”
Phys. Fluids
,
10
(
9
), pp.
1880
1889
.
34.
Aubry
,
N.
,
Holmes
,
P.
,
Lumley
,
J. L.
, and
Stone
,
E.
,
1988
, “
The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
192
(
1
), pp.
115
173
.
35.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
Wiley
,
Hoboken, NJ
, pp.
16
46
.
36.
Sciacchitano
,
A.
,
Wieneke
,
B.
, and
Scarano
,
F.
,
2013
, “
PIV Uncertainty Quantification by Image Matching
,”
Meas. Sci. Technol.
,
24
(
4
), p.
045302
.
37.
El-Adawy
,
M.
,
Heikal
,
M. R.
,
Aziz
,
A. A.
,
Siddiqui
,
M. I.
, and
Munir
,
S.
,
2017
, “
Characterization of the Inlet Port Flow Under Steady-State Conditions Using PIV and POD
,”
Energies
,
10
(
12
), p.
1950
.
38.
El-Adawy
,
M.
,
Heikal
,
M.
,
Aziz
,
A. A.
,
Adam
,
I.
,
Ismael
,
M.
,
Babiker
,
M.
,
Baharom
,
M.
, and
Abidin
,
E.
,
2018
, “
On the Application of Proper Orthogonal Decomposition (POD) for In-Cylinder Flow Analysis
,”
Energies
,
11
(
9
), p.
2261
.
39.
Khalighi
,
B.
,
1991
, “
Study of the Intake Tumble Motion by Flow Visualization and Particle Tracking Velocimetry
,”
Exp. Fluids
,
10
(
4
), pp.
230
236
.
40.
Szengel
,
R.
,
Middendorf
,
H.
,
Pott
,
E.
,
Theobald
,
J.
,
Etzrodt
,
T.
, and
Krebs
,
R.
,
2007
, “
The TSI With 88 kW—The Expansion of the Volkswagen Family of Fuel-Efficient Gasoline Engines
,”
Fortschr. Ber.-VDI Reihe 12 Verkehrstech. Fahrzeugtech.
,
639
(
2
), p.
113
.
41.
Zhang
,
X.
,
Wang
,
T.
,
Jia
,
M.
,
Li
,
W.
,
Cui
,
L.
, and
Zhang
,
X.
,
2015
, “
The Interactions of In-Cylinder Flow and Fuel Spray in a Gasoline Direct Injection Engine With Variable Tumble
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071507
.
42.
Agarwal
,
A. K.
,
Suresh
,
G.
, and
Akhilendra
,
P. S.
,
2018
, “
In-Cylinder Flow Evolution Using Tomographic Particle Imaging Velocimetry in an Internal Combustion Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012207
.
43.
Lee
,
K.
,
Bae
,
C.
, and
Kang
,
K.
,
2007
, “
The Effects of Tumble and Swirl Flows on Flame Propagation in a Four-Valve SI Engine
,”
Appl. Therm. Eng.
,
27
(
11–12
), pp.
2122
2130
.
44.
Stansfield
,
P.
,
Wigley
,
G.
,
Justham
,
T.
,
Catto
,
J.
, and
Pitcher
,
G.
,
2007
, “
PIV Analysis of In-Cylinder Flow Structures Over a Range of Realistic Engine Speeds
,”
Exp. Fluids
,
43
(
1
), pp.
135
146
.
45.
Druault
,
P.
,
Guibert
,
P.
, and
Alizon
,
F.
,
2005
, “
Use of Proper Orthogonal Decomposition for Time Interpolation From PIV Data
,”
Exp. Fluids
,
39
(
6
), pp.
1009
1023
.
46.
Huang
,
R. F.
,
Huang
,
C. W.
,
Chang
,
S. B.
,
Yang
,
H. S.
,
Lin
,
T. W.
, and
Hsu
,
W. Y.
,
2005
, “
Topological Flow Evolutions in Cylinder of a Motored Engine During Intake and Compression Strokes
,”
J. Fluids Struct.
,
20
(
1
), pp.
105
127
.
47.
Liu
,
K.
, and
Haworth
,
D. C.
,
2011
, “
Development and Assessment of POD for Analysis of Turbulent Flow in Piston Engines
,”
SAE
Paper No. 2011-01-0830.
48.
Fogleman
,
M.
,
Lumley
,
J.
,
Rempfer
,
D.
, and
Haworth
,
D.
,
2004
, “
Application of the Proper Orthogonal Decomposition to Datasets of Internal Combustion Engine Flows
,”
J. Turbul.
,
5
(
23
), pp.
1
3
.
49.
Fogleman
,
M.
,
Lumley
,
J.
,
Rempfer
,
D.
, and
Haworth
,
D.
,
2005
Application of the Proper Orthogonal Decomposition to Datasets of Internal Combustion Engine Flows
,”
J. Turbul.
,
5
, p. N23.https://www.tandfonline.com/doi/abs/10.1088/1468-5248/5/1/023
You do not currently have access to this content.