Nitromethane is extensively used in drag races and in glow plug unmanned aerial vehicle (UAV) engines. However, it has not been analyzed in the combustion literature enough. Nitromethane has a low stoichiometric air–fuel ratio; it can be blended with gasoline and used in larger quantities to enhance the power output of the internal combustion (IC) engines. This could find potential use in burgeoning UAV industry. The present investigation aims at experimentally determining the laminar burning speeds of nitromethane—gasoline blends at different equivalence ratios. Tests were conducted at both ambient conditions and at elevated temperatures and pressures. A constant volume combustion chamber (CVCC) was constructed and instrumented to carry out the investigation. The pressure rise in the chamber due to combustion was acquired and analyzed to determine the laminar burning speeds. The results showed that with an increase in the nitromethane concentration in gasoline, the laminar burning speeds for all the initial conditions also increased. With the rise in initial temperatures, the laminar burning speeds were observed to increase. However, a drop was observed with a rise in the initial pressures for all the blends. The obtained results for pure gasoline were compared with existing literature. A good match was observed. The investigation also aims at providing vital experimental data, which can be used for computational fluid dynamics validation studies later.

References

References
1.
Ferguson
,
C. R.
, and
Kirkpatrick
,
A.
,
2011
,
Internal Combustion Engines: Applied Thermosciences
,
3rd ed.
,
Wiley
,
New York
.
2.
Starkman
,
E. S.
,
1954
, “
Nitromethane as a Piston Engine Fuel
,”
SAE
Paper No. 540186.
3.
Raine
,
R. R.
, and
Thorwarth
,
H.
,
2004
, “
Performance and Combustion Characteristics of a Glow-Ignition Two-Stroke Engine
,” SAE Paper No. 2004-01-14.
4.
Menon
,
S.
,
Moulton
,
N.
, and
Cadou
,
C.
,
2007
, “
Development of a Dynamometer for Measuring Small Internal-Combustion Engine Performance
,”
J. Propuls. Power
,
23
(
1
), pp.
194
202
.
5.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1982
, “
Burning Velocities of Mixtures of Air With Methanol, Isooctane, and Indolene at High Pressure and Temperature
,”
Combust. Flame
,
48
, pp.
191
210
.
6.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1980
, “
Laminar Burning Velocity of Propane-Air Mixtures at High Temperature and Pressure
,”
Combust. Flame
,
38
, pp.
143
154
.
7.
Kelley
,
A. P.
,
Smallbone
,
A. J.
,
Zhu
,
D. L.
, and
Law
,
C. K.
,
2011
, “
Laminar Flame Speeds of C5 to C8 n-Alkanes at Elevated Pressures: Experimental Determination, Fuel Similarity, and Stretch Sensitivity
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
963
970
.
8.
Kelley
,
A. P.
,
Liu
,
W.
,
Xin
,
Y. X.
,
Smallbone
,
A. J.
, and
Law
,
C. K.
,
2011
, “
Laminar Flame Speeds, Non-Premixed Stagnation Ignition, and Reduced Mechanisms in the Oxidation of Iso-Octane
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
501
508
.
9.
Sirjean
,
B.
,
Dames
,
E.
,
Sheen
,
D. A.
,
You
,
X. Q.
,
Sung
,
C.
,
Holley
,
A. T.
,
Egolfopoulos
,
F. N.
,
Wang
,
H.
,
Vasu
,
S. S.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
,
Bowman
,
C. T.
,
Andrew
,
K.
,
Law
,
C. K.
,
Tsang
,
W.
,
Cernansky
,
N. P.
,
Miller
,
D. L.
,
Violi
,
A.
, and
Lindstedt
,
R. P.
,
2009
, “
A High-Temperature Chemical Kinetic Model of n-Alkane Oxidation, JetSurF Version 1.0
,” accessed Oct. 24, 2018, http://web.stanford.edu/group/haiwanglab/JetSurF/JetSurF1.0/index.html
10.
Chaos
,
M.
,
Kazakov
,
A.
,
Zhao
,
Z.
, and
Dryer
,
F. L.
,
2007
, “
A High-Temperature Chemical Kinetic Model for Primary Reference Fuels
,”
Int. J. Chem. Kinet.
,
39
(
7
), pp.
399
414
.
11.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2002
, “
A Comprehensive Modeling Study of Iso-Octane Oxidation
,”
Combust. Flame
,
129
(
3
), pp.
253
280
.
12.
Smallbone
,
A. J.
,
Liu
,
W.
,
Law
,
C. K.
,
You
,
X. Q.
, and
Wang
,
H.
,
2009
, “
Experimental and Modeling Study of Laminar Flame Speed and Non-Premixed Counterflow Ignition of n-Heptane
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1245
1252
.
13.
Bradley
,
D.
,
Hicks
,
R. A.
,
Lawes
,
M.
,
Sheppard
,
C. G. W.
, and
Woolley
,
R.
,
1998
, “
The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane–Air and Iso-Octane–n-Heptane–Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb
,”
Combust. Flame
,
115
(
1–2
), pp.
126
144
.
14.
Gülder
,
Ö. L.
,
1982
, “
Laminar Burning Velocities of Methanol, Ethanol and Isooctane-Air Mixtures
,”
Symp. (Int.) Combust.
,
19
(
1
), pp.
275
281
.
15.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2017
, “
Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012204
.
16.
Rokni
,
E.
,
Moghaddas
,
A.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2015
, “
Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012204
.
17.
Roy
,
S.
,
Zare
,
S.
, and
Askari
,
O.
,
2018
, “
Understanding the Effect of Oxygenated Additives on Combustion Characteristics of Gasoline
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022205
.
18.
Yu
,
G.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2018
, “
Theoretical Prediction of the Effect of Blending JP-8 With Syngas on the Ignition Delay Time and Laminar Burning Speed
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012204
.
19.
Yu
,
G.
,
Askari
,
O.
,
Hadi
,
F.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2017
, “
Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022202
.
20.
Brequigny
,
P.
,
Dayma
,
G.
,
Halter
,
F.
,
Mounam-Rousselle
,
C.
,
Dubois
,
T.
, and
Dagaut
,
P.
,
2015
, “
Laminar Burning Velocities of Premixed Nitromethane/Air Flames: An Experimental and Kinetic Modeling Study
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
703
710
.
21.
Nauclér
,
J. D.
,
Nilsson
,
E. J. K.
, and
Konnov
,
A. A.
,
2015
, “
Laminar Burning Velocity of Nitromethane + Air Flames: A Comparison of Flat and Spherical Flames
,”
Combust. Flame
,
162
(
10
), pp.
3803
3809
.
22.
Taylor
,
J.
,
1997
,
Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements
,
2nd ed.
, University Science Books, Sausalito, CA.
23.
Savitzky
,
A.
, and
Golay
,
M. J. E.
,
1964
, “
Smoothing and Differentiation of Data by Simplified Least Squares Procedures
,”
Anal. Chem.
,
36
(
8
), pp.
1627
1639
.
24.
Dahoe
,
A. E.
, and
De Goey
,
L. P. H.
,
2003
, “
On the Determination of the Laminar Burning Velocity From Closed Vessel Gas Explosions
,”
J. Loss Prev. Process. Ind.
,
16
(
6
), pp.
457
478
.
25.
Cammarota
,
F.
,
Di Benedetto
,
A.
,
Di Sarli
,
V.
,
Salzano
,
E.
, and
Russo
,
G.
,
2010
, “
The Effect of Initial Pressure on Explosions of Hydrogen-Enriched Methane/Air Mixtures
,”
Chem. Eng. Trans.
,
19
, pp.
273
278
.
26.
Huzayyin
,
A. S.
,
Moneib
,
H. A.
,
Shehatta
,
M. S.
, and
Attia
,
A. M. A.
,
2008
, “
Laminar Burning Velocity and Explosion Index of LPG–Air and Propane–Air Mixtures
,”
Fuel
,
87
(
1
), pp.
39
57
.
27.
Kelley
,
A. P.
,
Smallbone
,
A. J.
,
Zhu
,
D.
, and
Law
,
C. K.
,
2010
, “
Laminar Flame Speeds of C5 to C8 n-Alkanes at Elevated Pressures and Temperatures
,”
AIAA
Paper No. AIAA 2010-774.
28.
Davis
,
S. G.
, and
Law
,
C. K.
,
1998
, “
Determination of and Fuel Structure Effects on Laminar Flame Speeds of C1 to C8 Hydrocarbons
,”
Combust. Sci. Technol.
,
140
(
1–6
), pp.
427
449
.
29.
Huang
,
Y.
,
Sung
,
C. J.
, and
Eng
,
J. A.
,
2004
, “
Laminar Flame Speeds of Primary Reference Fuels and Reformer Gas Mixtures
,”
Combust. Flame
,
139
(
3
), pp.
239
251
.
30.
Egolfopoulos
,
F. N.
,
Du
,
D. X.
, and
Law
,
C. K.
,
1992
, “
A Study on Ethanol Oxidation Kinetics in Laminar Premixed Flames, Flow Reactors, and Shock Tubes
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
833
841
.
31.
Liao
,
S. Y.
,
Jiang
,
D. M.
,
Huang
,
Z. H.
,
Zeng
,
K.
, and
Cheng
,
Q.
,
2007
, “
Determination of the Laminar Burning Velocities for Mixtures of Ethanol and Air at Elevated Temperatures
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
374
380
.
32.
Mukunda
,
H. S.
,
2004
,
Understanding Aerospace Chemical Propulsion
,
Interline Publishing
,
Bangalore, India
.
33.
Kuo
,
K. K.
,
2005
,
Principles of Combustion
,
Wiley
, New York.
34.
Glassman
,
I.
,
Yetter
,
R. A.
, and
Glumac
,
N. G.
,
2014
,
Combustion
,
Academic Press
, San Diego, CA.
You do not currently have access to this content.