This work highlights the ability of the computational singular perturbation (CSP) method to calculate the significant indices of the modes on evolution of species and the degree of participation of reactions. The exploitation of these indices allows us to deduce the reduced models of detailed mechanisms having the same physicochemical properties. The mechanism used is 16 species and 41 reversible reactions. A reduction of these 41 reactions to 22 reactions is made. A constant pressure application of the detailed and reduced mechanism is made in OpenFOAM free and open source code. Following the Reynolds-averaged Navier–Stokes simulation scheme, standard k–ε and partial stirred reactor are used as turbulence and combustion models, respectively. To validate the reduced mechanism, comparison of numerical results (temperature and mass fractions of the species) was done between the detailed mechanism and the simplified model. This was done using the DVODE integrator in perfectly stirred reactor. After simulation in the computational fluid code dynamic (CFD) OpenFOAM, other comparisons were made. These comparisons were between the experimental data of a turbulent nonpremixed diffusion flame of type “DLR-A flame,” the reduced mechanism, and the detailed mechanism. The calculation time using the simplified model is considerably reduced compared to that using the detailed mechanism. An excellent agreement has been observed between these two mechanisms, indicating that the reduced mechanism can reproduce very well the same result as the detailed mechanism. The accordance with experimental results is also good.

References

References
1.
Yang
,
B.
, and
Pope
,
S. B.
,
1998
, “
An Investigation of the Accuracy of Manifold Methods and Splitting Schemes in the Computational Implementation of Combustion Chemistry
,”
Combust. Flame
,
112
(
1–2
), pp.
16
32
.
2.
Tomlin
,
A. S.
,
Turanyi
,
T.
, and
Pilling
,
M. J.
,
1998
,
Mathematical Tools for Construction, Investigation and Reduction of Combustion Mechanisms
,
Elsevier
,
Amsterdam, The Netherlands
.
3.
Law
,
C. K.
,
Sung
,
C. J.
, and
Lu
,
T. F.
,
2003
, “
Development of Comprehensive Detailed and Reduced Reaction Mechanisms for Combustion Modeling
,”
AIAA J.
,
41
(
9
), pp.
1629
1646
.
4.
Rabitz
,
H.
,
Kramer
,
M.
, and
Dacol
,
D.
,
1983
, “
Sensitivity Analysis in Chemical Kinetics
,”
Annu. Rev. Phys. Chem.
,
34
(
1
), pp.
419
461
.
5.
Turanyi
,
J.
,
1990
, “
Sensitivity Analysis of Complex Kinetic Systems. Tools and Applications
,”
J. Math. Chem.
,
5
, pp.
203
248
.
6.
Tomlin
,
A. S.
,
Turanyi
,
T.
, and
Pilling
,
M. J.
,
1997
, “
Mathematical Tools for the Construction, Investigation and Reduction of Combustion Mechanisms
,”
Comprehensive Chemical Kinetics
,
Elsevier
, Amsterdam, The Netherlands, pp.
293
437
.
7.
Turanyi
,
T.
,
1990
, “
Reduction of Large Reaction Mechanisms
,”
New J. Chem.
,
14
, pp.
795
803
.
8.
Lu
,
T. F.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.
9.
Lu
,
T. F.
, and
Law
,
C. K.
,
2006
, “
On the Applicability of Directed Relation Graphs to the Reduction of Reaction Mechanisms
,”
Combust. Flame
,
146
(
3
), pp.
472
483
.
10.
Lu
,
T. F.
, and
Law
,
C. K.
,
2006
, “
Linear Time Reduction of Large Kinetic Mechanisms With Directed Relation Graph: N-Heptane and Iso-Octane
,”
Combust. Flame
,
144
(
1–2
), pp.
24
36
.
11.
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
,
2008
, “
An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms
,”
Combust. Flame
,
154
(
1–2
), pp.
67
81
.
12.
Sankaran
,
R.
,
HawkeS
,
E. R.
,
Chen
,
J. H.
,
Lu
,
T. F.
, and
Law
,
C. K.
,
2007
, “
Structure of a Spatially Developing Turbulent Lean Methane–Air Bunsen Flame
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1291
1298
.
13.
Zheng
,
X. L.
,
Lu
,
T. F.
, and
Law
,
C. K.
,
2007
, “
Experimental Counterflow Ignition Temperatures and Reaction Mechanisms of 1,3-Butadiene
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
367
375
.
14.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
See
,
Y. C.
, and
Le Moine
,
A.
,
2018
, “
Multidimensional Numerical Simulations of Knocking Combustion in a Cooperative Fuel Research Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102205
.
15.
Manikantachari
,
K. R. V.
,
Vesely
,
L.
,
Martin
,
S.
,
Bobren-Diaz
,
J. O.
, and
Vasu
,
S.
,
2018
, “
Reduced Chemical Kinetic Mechanisms for Oxy/Methane Supercritical CO2 Combustor Simulations
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092202
.
16.
Max
,
B.
,
1913
, “
Eine Theorie der photochemischen Beaktionsgeschwindigkeiten
,”
Z. Phys. Chem.
,
85
, pp.
329
397
.
17.
D. L.
,
Chapman
,
L. K.
, and
Underhill
,
J.
,
1913
, “
The Interaction of Chlorine and Hydrogen. The Influence of Mass
,”
J. Chem. Soc., Trans.
,
103
, pp.
496
508
.
18.
Ramshaw
,
J. D.
,
1980
, “
Partial Chemical Equilibrium in Fluid Dynamic
,”
Phys. Fluids
,
23
(
4
), pp.
675
680
.
19.
Sung
,
C. J.
,
Law
,
C. K.
, and
Chen
,
J. Y.
,
2001
, “
Augmented Reduced Mechanisms for NO Emission in Methane Oxidation
,”
Combust. Flame
,
125
, pp.
906
919
.
20.
Lovas
,
T.
,
Nilsson
,
D.
, and
Mauss
,
F.
,
2000
, “
Automatic Reduction Procedure for Chemical Mechanisms Applied to Premixed Methane/Air Flames
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1809
1815
.
21.
Soyhan
,
H. S.
,
Mauss
,
F.
,
Sorusbay
,
C.
,
Soyhan
,
H. S.
,
Mauss
,
F.
, and
Sorusbay
,
C.
,
2002
, “
Chemical Kinetic Modeling of Combustion in Internal Combustion Engines Using Reduced Chemistry
,”
Combust. Sci. Technol.
,
174
(
11–12
), pp.
73
91
.
22.
Mendiara
,
T.
,
Alzueta
,
M. U.
,
Millera
,
A.
, and
Bilbao
,
R.
,
2004
, “
An Augmented Reduced Mechanism for Methane Combustion
,”
Energy Fuels
,
18
(
3
), pp.
619
627
.
23.
Massias
,
A.
,
Diamantis
,
D.
,
Mastorakos
,
E.
, and
Goussis
,
D. A.
,
1999
, “
An Algorithm for the Construction of Global Reduced Mechanisms With CSP Data
,”
Combust. Flame
,
117
(
4
), pp.
685
708
.
24.
Massias
,
A.
,
Diamantis
,
D.
,
Mastorakos
,
E.
, and
Goussis
,
D. A.
,
1999
, “
Global Reduced Mechanisms for Methane and Hydrogen Combustion With Nitric Oxide Formation Constructed With CSP Data
,”
Combust. Theory Modell.
,
3
(
2
), pp.
233
257
.
25.
Lu
,
T. F.
,
Ju
,
Y. G.
, and
Law
,
C. K.
,
2001
, “
Complex CSP for Chemistry Reduction and Analysis
,”
Combust. Flame
,
126
(
1–2
), pp.
1445
1455
.
26.
Montgomery
,
C. J.
,
Yang
,
C. G.
,
Parkinson
,
A. R.
, and
Chen
,
J. Y.
,
2006
, “
Selecting the Optimum Quasi-Steady-State Species for Reduced Chemical Kinetic Mechanisms Using a Genetic Algorithm
,”
Combust. Flame
,
144
, pp.
37
52
.
27.
Maas
,
U.
, and
Pope
,
S. B.
,
1992
, “
Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space
,”
Combust. Flame
,
88
(
3–4
), pp.
239
264
.
28.
Bedii Özdemir
,
İ.
,
2016
, “
Use of Computational Combustion in the Development and Design of Energy-Efficient Household Cooker-Top Burners
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022206
.
29.
Keck
,
J. C.
, and
Gillespie
,
D.
,
1971
, “
Rate-Controlled Partial-Equilibrium Method for Treating Reacting Gas Mixtures
,”
Combust. Flame
,
17
(
2
), pp.
237
241
.
30.
Hadi
,
F.
,
Janbozorgi
,
M.
,
M.R.H
,
S.
, and
Metghalchi
,
H.
, ”
2016
, “
A Study of Interactions Between Mixing and Chemical Reaction Using the Rate-Controlled Constrained-Equilibrium Method
,”
J. Non-Equilib. Thermodyn.
,
41
(4), pp. 257–278.
31.
Beretta
,
G. P.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Degree of Disequilibrium Analysis for Automatic Selection of Kinetic Constraints in the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
168
, pp. 342–364.
32.
Yu
,
G.
,
Hadi
,
F.
, and
Metghalchi
,
H.
,
2018
, “
Rate-Controlled Constrained-Equilibrium Application in Shock Tube Ignition Delay Time Simulation
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
020801
.
33.
Yu
,
G.
,
Metghalchi
,
H.
,
Askari
,
O.
, and
Wang
,
Z.
,
2018
, “
Combustion Simulation of Propane/Oxygen (With Nitrogen/Argon) Mixtures Using Rate-Controlled Constrained-Equilibrium
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022204
.
34.
Lam
,
S. H.
, and
Goussis
,
D. A.
,
1989
, “
Understanding Complex Chemical Kinetics With Computational Singular Perturbation
,”
Proc. Combust. Inst.
,
22
(
1
), pp.
931
941
.
35.
Lam
,
S. H.
, and
Goussis
,
D. A.
,
1994
, “
The CSP Method for Simplifying Kinetics
,”
Int. J. Chem. Kinet.
,
26
(
4
), pp.
461
486
.
36.
Valorani
,
M.
,
Najm
,
H. N.
, and
Goussis
,
D. A.
,
2003
, “
CSP Analysis of a Transient Flame-Vortex Interaction: Time Scales and Manifolds
,”
Combust. Flame
,
134
(
1–2
), pp.
35
53
.
37.
Valorani
,
M.
,
Creta
,
F.
,
Goussis
,
D. A.
, and
Lee
,
J. C.
,
2006
, “
An Automatic Procedure for the Simplification of Chemical Kinetic Mechanisms Based on CSP
,”
Combust. Flame
,
146
(
1–2
), pp.
29
51
.
38.
Kaper
,
H. G.
,
Kaper
,
T. J.
, and
Zagaris
,
A.
,
2015
, “
Geometry of the Computational Singular Perturbation Method
,”
Math. Model. Nat. Phenom.
,
10
(
3
), pp.
16
30
.
39.
Lam
,
S. H.
, and
Goussis
,
D. A.
,
1991
, “
In Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames
,”
Conventional Asymptotics and Computational Singular Perturbation for Simplified Kinetics Modeling
(Lecture Notes in Physics Vol. 384),
M.
Smooke
, ed.,
Springer-Verlag
, Berlin, Chap. 10.
40.
Rakhshi
,
A.
, and
Wiltowski
,
T.
,
2018
, “
A Kinetic Assessment of Entrained Flow Gasification Modeling
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092204
.
41.
Christopher, J.
, Greenshields, CFD Direct Ltd.,
2015
, “
OpenFOAM 2.4.0 User Guide
,” OpenFOAM Foundation Ltd., Gothenburg, Sweden.
42.
Sabel'Nikov
,
V. A.
, and
Figueira da Silva
,
L. F.
,
2002
, “
Partially Stirred Reactor: Study of the Sensitivity of the Monte-Carlo Simulation to the Number of Stochastic Particles With the Use of a Semi-Analytic, Steady-State, Solution to the PDF Equation
,”
Combust. Flame
,
129
(
1–2
), pp.
164
178
.
43.
Bergmann
,
V.
,
Meir
,
W.
,
Wolff
,
D.
, and
Stricker
,
W.
,
1998
, “
Application of Spontaneous Raman and Rayleigh Scattering and 2D LIF for the Characterization of a Turbulent CH4/H2/N2 Jet Diffusion Flame
,”
Appl. Phys. B: Lasers Opt.
,
66
(
4
), pp.
489
502
.
You do not currently have access to this content.