In this work, the methanol synthesis on a commercial industrial catalyst in a novel cylindrical radial flow packed-bed reactor is investigated. The adiabatic and nonadiabatic cylindrical radial flow reactors were proposed and modeled in this research. The proposed configuration has been compared with conventional reactor for methanol production. It leads to higher methanol production and lower pressure drop, with the same catalyst consumption. Furthermore, the results show that the nonadiabatic radial flow packed-bed reactor has a higher methanol content compared with the adiabatic one. The improvement in methanol production was studied by optimizing the essential parameters such as inlet temperatures of the feed and cooling water as well as the number of cooling tubes. The nonlinearity and complexity of the reactor models make the traditional optimization methods ineffective and improbable. Therefore, the process was optimized by genetic algorithm (GA) method, which is one of the most powerful methods. The optimum values for the number of cooling tubes, feed and cooling water temperatures were 308, 507.6 K, and 522.43 K, respectively. The optimization results showed that a new reactor design could be proposed to reduce the cost of methanol synthesis.

References

References
1.
Olah
,
G. A.
,
2005
, “
Beyond Oil and Gas: The Methanol Economy
,”
Angew. Chem. Int. Ed.
,
44
(
18
), pp.
2636
2636
.
2.
Panda
,
J. K.
,
Sastry
,
R. K.
, and
Rai
,
R. N.
,
2017
, “
A Taguchi-Fuzzy Based Multi-Objective Optimization of a DI Diesel Engine Fueled With Different Blends of Leucas Zeylanica Methyl Ester (lzme) and 2-EHN Diesel Additive With Diesel
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042209
.
3.
Hu
,
G.
,
Liao
,
S.
,
Zuo
,
Z.
,
Wang
,
K.
, and
Zhu
,
Z.
,
2018
, “
Kinetic Effects of Methanol Addition on the Formation and Consumption of Formaldehyde and Benzene in Premixed n-Heptane/Air Flames
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072205
.
4.
Zhang
,
C.
,
Ge
,
Y.
,
Tan
,
J.
,
Li
,
L.
,
Peng
,
Z.
, and
Wang
,
X.
,
2017
, “
Emissions From Light-Duty Passenger Cars Fueled With Ternary Blend of Gasoline, Methanol, and Ethanol
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062202
.
5.
Alvin
,
B. S.
,
1997
, “
Methanol, Past, Present, and Speculation on the Future
,”
AICHE J.
,
23
, pp.
362
375
.
6.
Roos
,
H.
,
Steigelmann
,
G.
, and
Klause
,
R.
,
1993
, “
Seventy Years of Catalysts for Methanol Synthesis-Historical and Recent Developments
,”
World Methanol Conference
, Atlanta, Georgia, Nov. 29–Dec. 1, pp. XIII–1.
7.
Lovik
,
I.
,
Hillestad
,
M.
, and
Hertzberg
,
T.
,
1998
, “
Long Term Dynamic Optimization of a Catalytic Reactor System
,”
Comput. Chem. Eng.
,
22
(Suppl. 1), pp.
707
710
.
8.
Rezaie
,
N.
,
Jahanmiri
,
A.
,
Moghtaderi
,
B.
, and
Rahimpour
,
M. R.
,
2005
, “
A Comparison of Homogeneous and Heterogeneous Dynamic Models for Industrial Methanol Reactors in the Presence of Catalyst Deactivation
,”
Chem. Eng. Process.
,
44
(
8
), pp.
911
921
.
9.
Parvasi
,
P.
,
Rahimpour
,
M. R.
, and
Jahanmiri
,
A.
,
2008
, “
Incorporation of Dynamic Flexibility in the Design of a Methanol Synthesis Loop in the Presence of Catalyst Deactivation
,”
Chem. Eng. Technol.
,
31
(
1
), pp.
116
132
.
10.
Aroudam
,
E. H.
,
2002
, “
Numerical Modelling of Heat and Mass Transfer in Adsorption Solar Reactor of Ammonia on Active Carbon
,”
Heat Mass Transfer
,
39
(
1
), pp.
47
55
.
11.
Jiang
,
B.
,
Hao
,
L.
,
Zhang
,
L.
,
Sun
,
Y.
, and
Xiao
,
X.
,
2015
, “
Numerical Investigation of Flow and Heat Transfer in a Novel Configuration Multi-Tubular Fixed Bed Reactor for Propylene to Acrolein Process
,”
Heat Mass Transfer
,
51
(
1
), pp.
67
84
.
12.
Rahimpour
,
M. R.
,
Dehnavi
,
M. R.
,
Allahgholipour
,
F.
,
Iranshahi
,
D.
, and
Jokar
,
S. M.
,
2012
, “
Assessment and Comparison of Different Catalytic Coupling Exothermic and Endothermic Reactions: A Review
,”
Appl. Energy
,
99
, pp.
496
512
.
13.
Salehi
,
K.
,
Jokar
,
S. M.
,
Shariati
,
J.
,
Bahmani
,
M.
,
Sedghamiz
,
M. A.
, and
Rahimpour
,
M. R.
,
2014
, “
Enhancement of CO Conversion in a Novel Slurry Bubble Column Reactor for Methanol Synthesis
,”
J. Nat. Gas Sci. Eng.
,
21
, pp.
170
183
.
14.
Parvasi
,
P.
,
Khosravanipour Mostafazadeh
,
A.
, and
Rahimpour
,
M. R.
,
2009
, “
Dynamic Modeling and Optimization of a Novel Methanol Synthesis Loop With Hydrogen-Permselective Membrane Reactor
,”
Int. J. Hydrogen Energy
,
34
(
9
), pp.
3717
3733
.
15.
Talaghat
,
M. R.
,
Jokar
,
S. M.
, and
Modarres
,
E.
,
2017
, “
Mathematical Modeling of Methyl Ester Concentration Distribution in a Continuous Membrane Tubular Reactor and Comparison With Conventional Tubular Reactor
,”
Heat Mass Transfer
,
53
(
10
), pp.
3099
3108
.
16.
Thushari
,
P. G. I.
, and
Babel
,
S.
,
2017
, “
Biodiesel Production From Waste Palm Oil Using Palm Empty Fruit Bunch-Derived Novel Carbon Acid Catalyst
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032204
.
17.
Helmi
,
A.
,
Fernandez
,
E.
,
Melendez
,
J.
,
Tanaka
,
D. A. P.
,
Gallucci
,
F.
, and
Annaland
,
M. S.
,
2016
, “
Fluidized Bed Membrane Reactors for Ultra Pure H2 Production: A Step Forward Towards Commercialization
,”
Molecules
,
21
(
3
), p.
376
.
18.
Rahimpour
,
M. R.
,
Abbasloo
,
A.
, and
Sayyad Amin
,
J.
,
2008
, “
A Novel Radial-Flow, Spherical-Bed Reactor Concept for Methanol Synthesis in the Presence of Catalyst Deactivation
,”
Chem. Eng. Technol.
,
31
(
11
), pp.
1615
1629
.
19.
Rahimpour
,
M. R.
,
Parvasi
,
P.
, and
Setoodeh
,
P.
,
2009
, “
Dynamic Optimization of a Novel Radial-Flow, Spherical-Bed Methanol Synthesis Reactor in the Presence of Catalyst Deactivation Using Differential Evolution (DE) Algorithm
,”
Int. J. Hydrogen Energy
,
34
(
15
), pp.
6221
6230
.
20.
Viecco Guillermo
,
A.
, and
Caram Hugo
,
S.
,
2002
, “
The Spherical Reverse Flow Reactor
,”
Chem. Eng. Sci.
,
57
(
18
), pp.
4005
4025
.
21.
Sadeghi
,
S.
,
Vafajoo
,
L.
,
Kazemeini
,
M.
, and
Fattahi
,
M.
,
2014
, “
Modeling of the Methanol Synthesis Catalyst Deactivation in a Spherical Bed Reactor: An Environmental Challenge
,”
APCBEE Procedia
,
10
, pp.
84
90
.
22.
Hirotani
,
K.
,
Nakamura
,
H.
, and
Shoji
,
K.
,
1998
, “
Optimum Catalytic Reactor Design for Methanol Synthesis With TECMRF-Zr Reactor
,”
Catal. Surv. Jpn.
,
2
(
1
), pp.
99
106
.
23.
Holland
,
J.
,
1975
,
Adaptation in Natural and Artificial Systems
,
MIT Press
,
Cambridge, MA
.
24.
Bunnag
,
D.
, and
Sun
,
M.
,
2005
, “
Genetic Algorithm for Constrained Global Optimization in Continuous Variables
,”
Appl. Math. Comput.
,
171
, pp.
604
636
.
25.
Augustoa
,
O. B.
,
Rabeaub
,
S.
,
Depinceb
,
P.
, and
Bennisb
,
F.
,
2006
, “
Multi-Objective Genetic Algorithms: A Way to Improve the Convergence Rate
,”
Eng. Appl. Artif. Intell.
,
19
(
5
), pp.
501
510
.
26.
Adham
,
A. M.
,
Mohd-Ghazali
,
N.
, and
Ahmad
,
R.
,
2012
, “
Optimization of an Ammonia-Cooled Rectangular Microchannel Heat Sink Using Multi-Objective Non-Dominated Sorting Genetic Algorithm (NSGA2)
,”
Heat Mass Transfer
,
48
(
10
), pp.
1723
1733
.
27.
Şencan Şahin
,
A.
,
2012
, “
Optimization of Solar Air Collector Using Genetic Algorithm and Artificial Bee Colony Algorithm
,”
Heat Mass Transfer
,
48
(
11
), pp.
1921
1928
.
28.
Hayat
,
N.
,
Tahir Ameen
,
M.
,
Kashif Tariq
,
M.
,
Abbas Shah
,
S. N.
, and
Naveed
,
A.
,
2017
, “
Dual-Objective Optimization of Organic Rankine Cycle (ORC) Systems Using Genetic Algorithm: A Comparison Between Basic and Recuperative Cycles
,”
Heat Mass Transfer
,
53
(
8
), pp.
2577
2596
.
29.
Márquez-Nolasco
,
A.
,
Conde-Gutiérrez
,
R. A.
,
Hernández
,
J. A.
,
Huicochea
,
A.
,
Siqueiros
., and
Pérez
,
O. R.
,
2017
, “
Optimization and Estimation of the Thermal Energy of an Absorber With Graphite Disks by Using Direct and Inverse Neural Network
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020906
.
30.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
B. J.
,
Vasu
,
S.
,
Hossain
,
J.
, and
Donazzolo
,
A.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071601
.
31.
Kordabadi
,
H.
, and
Jahanmiri
,
A.
,
2005
, “
Optimization of Methanol Synthesis Reactor Using Genetic Algorithms
,”
Chem. Eng. J.
,
108
(
3
), pp.
249
255
.
32.
Kordabadi
,
H.
, and
Jahanmiri
,
A.
,
2007
, “
A Pseudo-Dynamic Optimization of a Dual-Stage Methanol Synthesis Reactor in the Face of Catalyst Deactivation
,”
Chem. Eng. Process.
,
46
(
12
), pp.
1299
1309
.
33.
Savoretti
,
A. A.
,
Borio
,
D. O.
,
Bucala
,
V.
, and
Porras
,
J. A.
,
1999
, “
Non-Adiabatic Radial-Flow Reactor for Styrene Production
,”
Chem. Eng. Sci.
,
54
(
2
), pp.
205
213
.
34.
Graaf
,
G. H.
,
Stamhuis
,
E. J.
, and
Beenackers
,
A. A. C. M.
,
1988
, “
Kinetics of Low-Pressure Methanol Synthesis
,”
Chem. Eng. Sci.
,
43
(
12
), pp.
3185
3195
.
35.
Graaf
,
G. H.
,
Sijtsema
,
P. J. J. M.
,
Stamhuis
,
E. J.
, and
Joosten
,
G. E.
,
1986
, “
Chemical Equilibrium in Methanol Synthesis
,”
Chem. Eng. Sci.
,
41
(
11
), pp.
2883
2890
.
You do not currently have access to this content.