This paper presents an analysis of the transient operation of a micro combined heat and power (CHP) system, equipped with both thermal and electric storage units and connected with both electric and district heating grids. Analysis is carried out by means of a simulation model developed by the authors for reproducing the transient behavior of micro-CHP systems operating within a microgrid. The prime mover considered in this paper is an internal combustion reciprocating engine. A residential user, characterized by electric and thermal energy demand during one representative summer day, is analyzed by using literature data. The transient response of each component is evaluated separately to quantify the relative deviation (RD) between the user-demand and micro-CHP system transient response. Therefore, this paper provides a measure of the RD over 1 day in terms of the energy required by the user versus the energy provided to the user itself.

References

References
1.
Macchi
,
E.
,
Campanari
,
S.
, and
Silva
,
P.
,
2006
,
La Microcogenerazione a Gas Naturale
,
Polipress
,
Milan, Italy
.
2.
Chicco
,
G.
, and
Mancarella
,
P.
,
2009
, “
Distributed Multi-Generation: A Comprehensive View
,”
Renewable Sustainable Energy Rev.
,
13
(
3
), pp.
535
531
.
3.
Bianchi
,
M.
, and
Spina
,
P. R.
,
2010
, “
Integrazione di Sistemi Cogenerativi Innovativi di Piccolissima Taglia Nelle Reti di Distribuzione Dell'energia Elettrica, termica e Frigorifera
,” ENEA, Rome, Italy, Report Ricerca di Sistema Elettrico 220 (in Italian).
4.
Barbieri
,
E. S.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2012
, “
Analysis of Innovative Micro-CHP Systems to Meet Household Energy Demands
,”
Appl. Energy
,
97
, pp.
723
733
.
5.
Maghanki
,
M. M.
,
Ghobadian
,
B.
,
Najafi
,
G.
, and
Galogah
,
R. J.
,
2013
, “
Micro Combined Heat and Power (MCHP) Technologies and Application
,”
Renewable Sustainable Energy Rev.
,
28
, pp.
510
524
.
6.
Bianchi
,
M.
,
De Pascale
,
A.
, and
Spina
,
P. R.
,
2012
, “
Guidelines for Residential Micro-CHP Systems Design
,”
Appl. Energy
,
97
, pp.
673
685
.
7.
Campos Celador
,
A.
,
Odriozola
,
M.
, and
Sala
,
J. M.
,
2011
, “
Implications of the Modelling of Stratified Hot Water Storage Tanks in the Simulation of CHP Plants
,”
Energy Convers. Manage.
,
52
(
8–9
), pp.
3018
3026
.
8.
Chesi
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Magnani
,
S.
, and
Tarani
,
F.
,
2013
, “
Influence of the Heat Storage Size on the Plant Performances in a Smart User Case Study
,”
Appl. Energy
,
112
, pp.
1454
1465
.
9.
Blarke
,
M. B.
, and
Lund
,
H.
,
2008
, “
The Effectiveness of Storage and Relocation Options in Renewable Energy Systems
,”
Renewable Energy
,
33
(
7
), pp.
1499
1507
.
10.
Prando
,
D.
,
Patuzzi
,
F.
,
Pernigotto
,
G.
,
Gasparella
,
A.
, and
Baratieri
,
M.
,
2014
, “
Biomass Gasification System for Residential Application: An Integrated Simulation Approach
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
152
160
.
11.
Cau
,
G.
,
Cocco
,
D.
, and
Petrollese
,
M.
,
2014
, “
Modeling and Simulation of an Isolated Hybrid Micro-Grid With Hydrogen Production and Storage
,”
Energy Procedia
,
45
, pp.
12
21
.
12.
Szega
,
M.
, and
Żymełka
,
P.
,
2017
, “
Thermodynamic and Economic Analysis of the Production of Electricity, Heat, and Cold in the Combined Heat and Power Unit With the Absorption Chillers
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052002
.
13.
Dorer
,
V.
, and
Weber
,
A.
,
2009
, “
Energy and CO2 Emissions Performance Assessment of Residential Micro-Cogeneration Systems With Dynamic Whole-Building Simulation Programs
,”
Energy Convers. Manage.
,
50
(
3
), pp.
648
657
.
14.
Brandoni
,
C.
,
Arteconi
,
A.
,
Ciriachi
,
G.
, and
Polonara
,
F.
,
2014
, “
Assessing the Impact of Micro-Generation Technologies on Local Sustainability
,”
Energy Convers. Manage.
,
87
, pp.
1281
1290
.
15.
Comodi
,
G.
,
Cioccolanti
,
L.
, and
Renzi
,
M.
,
2014
, “
Modelling the Italian Household Sector at the Municipal Scale: Micro-CHP, Renewables and Energy Efficiency
,”
Energy
,
68
, pp.
92
103
.
16.
Yun
,
K.
,
Luck
,
R.
,
Mago
,
P. J.
, and
Smith
,
A.
,
2011
, “
Analytic Solutions for Optimal Power Generation Unit Operation in Combined Heating and Power Systems
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
011301
.
17.
Angrisani
,
G.
,
Canelli
,
M.
,
Roselli
,
C.
, and
Sasso
,
M.
,
2015
, “
Microcogeneration in Building With Low Energy Demand in Load Sharing Application
,”
Energy Convers. Manage.
,
100
, pp.
78
89
.
18.
Park
,
C.
,
Kim
,
C.
,
Lee
,
S.
,
Lim
,
G.
,
Lee
,
S.
, and
Choi
,
Y.
,
2015
, “
Effect on Control Strategy on Performance and Emissions of Natural Gas Engine for Cogeneration System
,”
Energy
,
82
, pp.
353
360
.
19.
Mongibello
,
L.
,
Bianco
,
N.
,
Caliano
,
M.
, and
Graditi
,
G.
,
2015
, “
Influence of Heat Dumping on the Operation of Residential Micro-CHP Systems
,”
Appl. Energy
,
160
, pp.
206
220
.
20.
Thomas
,
B.
,
2014
, “
Experimental Determination of Efficiency Factors for Different Micro-CHP Units According to the Standard DIN 4709
,”
Appl. Therm. Eng.
,
71
(
2
), pp.
721
728
.
21.
Alahäivälä
,
A.
,
Heß
,
T.
,
Cao
,
S.
, and
Lehtonen
,
M.
,
2015
, “
Analyzing the Optimal Coordination of a Residential Micro-CHP System With a Power Sink
,”
Appl. Energy
,
149
, pp.
326
337
.
22.
Benato
,
A.
, and
Stoppato
,
A.
,
2017
, “
Energy and Cost Analysis of a New Packed Bed Pumped Thermal Electricity Storage Unit
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020904
.
23.
Bianchi
,
M.
,
De Pascale
,
A.
,
Melino
,
F.
, and
Peretto
,
A.
,
2014
, “
Performance Prediction of Micro-CHP Systems Using Simple Virtual Operating Cycles
,”
Appl. Therm. Eng.
,
71
(
2
), pp.
771
779
.
24.
Gu
,
W.
,
Wu
,
Z.
,
Bo
,
R.
,
Liu
,
W.
,
Zhou
,
G.
,
Chen
,
W.
, and
Wu
,
Z.
,
2014
, “
Modelling, Planning and Optimal Energy Management of Combined Cooling, Heating and Power Microgrid: A Review
,”
Electr. Power Energy Syst.
,
54
, pp.
26
37
.
25.
Darkovich
,
K.
,
Kenney
,
B.
,
MacNeil
,
D. D.
, and
Armstrong
,
M. M.
,
2015
, “
Control Strategy and Cycling Demands for Li-Ion Storage Batteries in Residential Micro-Cogeneration Systems
,”
Appl. Energy
,
141
, pp.
32
41
.
26.
Fares
,
R. L.
, and
Webber
,
M. E.
,
2015
, “
Combining a Dynamic Battery Model With High-Resolution Smart Grid Data to Assess Microgrid Islanding Lifetime
,”
Appl. Energy
,
137
, pp.
482
489
.
27.
Mollenhauer
,
E.
,
Christidis
,
A.
, and
Tsatsaronis
,
G.
,
2017
, “
Increasing the Flexibility of Combined Heat and Power Plants With Heat Pumps and Thermal Energy Storage
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020907
.
28.
Spitalny
,
L.
,
Myrzik
,
J. M. A.
, and
Mehlhorn
,
T.
,
2014
, “
Estimation of the Economic Addressable Market of Micro-CHP and Heat Pumps Based on the Status of the Residential Building Sector in Germany
,”
Appl. Therm. Eng.
,
71
(
2
), pp.
838
846
.
29.
Torchio
,
M. F.
,
2015
, “
Comparison of District Heating CHP and Distributed Generation CHP With Energy, Environmental, and Economic Criteria for Northern Italy
,”
Energy Convers. Manage.
,
92
, pp.
114
128
.
30.
Adam
,
A.
,
Fraga
,
E. S.
, and
Brett
,
D. J. L.
,
2015
, “
Options for Residential Building Services Design Using Fuel Cell Based Micro-CHP and the Potential for Heat Integration
,”
Appl. Energy
,
138
, pp.
685
694
.
31.
Pizzolato
,
A.
,
Sciacovelli
,
A.
, and
Verda
,
V.
,
2017
, “
Topology Optimization of Robust District Heating Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020905
.
32.
Menon
,
R. P.
,
Marechal
,
F.
, and
Paolone
,
M.
,
2016
, “
Intra-Day Electro-Thermal Model Predictive Control for Polygeneration Systems in Microgrids
,”
Energy
,
104
, pp.
308
319
.
33.
Shaneb
,
O. A.
,
Taylor
,
P. C.
, and
Coates
,
G.
,
2012
, “
Optimal Online Operation of Residential μCHP Systems Using Linear Programming
,”
Energy Build.
,
44
, pp.
17
25
.
34.
Cho
,
H.
,
Luck
,
R.
, and
Chamra
,
L. M.
,
2010
, “
Supervisory Feed-Forward Control for Real-Time Topping Cycle CHP Operation
,”
ASME J. Energy Resour. Technol.
,
132
(
1
), p.
012401
.
35.
Su
,
W.
, and
Wang
,
J.
,
2012
, “
Energy Management Systems in Microgrid Operations
,”
Electr. J.
,
25
(
8
), pp.
45
60
.
36.
Mahmoud
,
M. S.
,
Azher Hussain
,
S.
, and
Abido
,
M. A.
,
2014
, “
Modeling and Control of Microgrid: An Overview
,”
J. Franklin Inst.
,
351
(
5
), pp.
2822
2859
.
37.
Gupta
,
R. A.
, and
Gupta
,
N. K.
,
2015
, “
A Robust Optimization Based Approach for Microgrid Operation in Deregulated Environment
,”
Energy Convers. Manage.
,
93
, pp.
121
131
.
38.
Zidan
,
A.
,
Gabbar
,
H. A.
, and
Eldessouky
,
A.
,
2015
, “
Optimal Planning of Combined Heat and Power Systems Within Microgrids
,”
Energy
,
93
, pp.
235
244
.
39.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2013
, “
Optimal Allocation of Thermal, Electric and Cooling Loads Among Generation Technologies in Household Applications
,”
Appl. Energy
,
112
, pp.
205
214
.
40.
Hafez
,
O.
, and
Bhattacharya
,
K.
,
2012
, “
Optimal Planning and Design of a Renewable Energy Based Supply System for Microgrids
,”
Renewable Energy
,
45
, pp.
7
15
.
41.
Radosavljević
,
J.
,
Jevtić
,
M.
, and
Klimenta
,
D.
,
2016
, “
Energy and Operation Management of a Microgrid Using Particle Swarm Optimization
,”
Eng. Optim.
,
48
(
5
), pp.
811
830
.
42.
Barberis
,
S.
,
Rivarolo
,
M.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2016
, “
Thermo-Economic Analysis of the Energy Storage Role in a Real Polygenerative District
,”
J. Energy Storage
,
5
, pp.
187
202
.
43.
Ribarov
,
L. A.
, and
Liscinsky
,
D. S.
,
2006
, “
Microgrid Viability for Small-Scale Cooling, Heating, and Power
,”
ASME J. Energy Resour. Technol.
,
129
(
1
), pp.
71
78
.
44.
Boutin
,
V.
,
Ignatova
,
V.
,
Philippe
,
J.
,
Heliot
,
R.
,
Herriot
,
Y.
,
Haun
,
A.
, and
Wagner
,
V.
,
2017
, “
How New Microgrid Technologies Enable Optimal Cooperation Among Distributed Energy Resources
,” Schneider Electric,
Report
http://www2.greentechmedia.com/l/264512/2018-09-27/6p9d6?gtm_source.
45.
Ippolito
,
F.
, and
Venturini
,
M.
,
2018
, “
Development of a Simulation Model of Transient Operation of Micro-CHP Systems in a Microgrid
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032001
.
46.
Zachar
,
M.
, and
Daoutidis
,
P.
,
2015
, “
Understanding and Predicting the Impact of Location and Load on Microgrid Design
,”
Energy
,
90
, pp.
1005
1023
.
47.
Rehan
,
A.
,
Habib
,
M. A.
,
Elshafei
,
M.
, and
Alzaharnah
,
I. T.
,
2017
, “
Modeling Time Variations of Boiler Efficiency
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052001
.
48.
Portoraro
,
A.
,
Ruscica
,
G.
, and
Badami
,
M.
,
2010
, “
Micro-Cogenerazione Nel Settore Residenziale Con L'utilizzo di Motori a Combustione Interna: Sviluppo di un Modello Matematico per la Simulazione Oraria e Analisi di un Caso Reale
,” ENEA, Rome, Italy, Report Ricerca di Sistema Elettrico 227 (in Italian).
49.
Cullen
,
B.
, and
McGovern
,
J.
,
2009
, “
The Quest for More Efficient Industrial Engines: A Review of Current Industrial Engine Development and Applications
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
021601
.
50.
Kalantzis
,
N.
,
Pezouvanis
,
A.
, and
Ebrahimi
,
K. M.
,
2017
, “
Internal Combustion Engine Model for Combined Heat and Power (CHP) Systems Design
,”
Energies
,
10
(
12
), p.
1948
.
51.
Onovwiona
,
H. I.
,
Ismet Ugursal
,
V.
, and
Fung
,
A. S.
,
2007
, “
Modeling of Internal Combustion Engine Based Cogeneration Systems for Residential Applications
,”
Appl. Therm. Eng.
,
27
(
5–6
), pp.
848
861
.
52.
Radu
,
R.
,
Micheli
,
D.
,
Alessandrini
,
S.
,
Casula
,
I.
, and
Radu
,
B.
,
2015
, “
Modeling and Performance Analysis of an Integrated System: Variable Speed Operated Internal Combustion Engine Combined Heat and Power Unit–Photovoltaic Array
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032001
.
53.
Ziviani
,
D.
,
Beyene
,
A.
, and
Venturini
,
M.
,
2014
, “
Design, Analysis and Optimization of a Micro-CHP ORC System for Ultra-Low Grade Thermal Energy Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011602
.
54.
Malavolta
,
M.
,
Beyene
,
A.
, and
Venturini
,
M.
,
2010
, “
Experimental Implementation of a Micro-Scale ORC-Based CHP Energy System for Domestic Applications
,”
ASME
Paper No. IMECE2010-37208.
55.
Ziviani
,
D.
,
Beyene
,
A.
, and
Venturini
,
M.
,
2014
, “
Advances and Challenges in ORC Systems Modeling for Low Grade Thermal Energy Recovery
,”
Appl. Energy
,
121
, pp.
79
95
.
You do not currently have access to this content.