This study aimed to investigate the effectiveness of the full-scale internal circulation (IC) reactor in biodegrading of municipal solid waste (MSW) fresh leachate under mesophilic conditions, where the anaerobic process stability, biogas yield, and sludge granulation were intensively investigated. The effects of operational parameters on the influent organic loading rate (OLR), chemical oxygen demand (COD) removal efficiency, alkalinity (ALK), pH, volatile fatty acids (VFAs) accumulation, and effluent recirculation were also studied. The results showed that the reactor operated stably and effectively. The COD removal efficiency and biogas yield could be maintained at (92.8 ± 2.0)% and (0.47 ± 0.05) m3/kg CODremoval, respectively, with the influent OLR (24.5 ± 0.9) kg COD/(m3 d) and hydraulic retention time (HRT) 2.7d during the stable operation phase. Meanwhile, this study demonstrated that 1.5–3.0 m/h would be the optimal Vup for the reactor, corresponding to the effluent recirculation of 32.5–78.0 m3/h. Moreover, it was found that the content of extracellular polymeric substances (EPS) in the anaerobic sludge increased from 50.3 to 140.7 mg/g volatile suspended solids (VSS), and the sludge had good granular performance during the reactor operation.

References

References
1.
Luo
,
J. H.
,
Qian
,
G. R.
,
Liu
,
J. Y.
, and
Xu
,
Z. P.
,
2015
, “
Anaerobic Methanogenesis of Fresh Leachate From Municipal Solid Waste: A Brief Review on Current Progress
,”
Renew. Sust. Energ. Rev.
,
49
, pp.
21
28
.
2.
Cheng
,
H.
, and
Hu
,
Y.
,
2010
, “
Municipal Solid Waste (MSW) as a Renewable Source of Energy: Current and Future Practices in China
,”
Bioresour. Technol.
,
101
(
11
), pp.
3816
3824
.
3.
Nie
,
Y. F.
,
2008
, “
Development and Prospects of Municipal Solid Waste (MSW) Incineration in China
,”
Front. Environ. Sci. Eng.
,
2
(
1
), pp.
1
7
.
4.
Ye
,
Z. L.
,
Xie
,
X. Q.
,
Dai
,
L. H.
,
Wang
,
Z. W.
,
Wu
,
W. H.
,
Zhao
,
F. Y.
,
Xie
,
X. M.
,
Huang
,
S. Q.
,
Liu
,
M. L.
, and
Chen
,
S. H.
,
2014
, “
Full-Scale Blending Treatment of Fresh MSWI Leachate With Municipal Wastewater in a Wastewater Treatment Plant
,”
Waste Manag.
,
34
(
11
), pp.
2305
2311
.
5.
Fu
,
Z.
,
Zhang
,
S. H.
,
Li
,
X. P.
,
Shao
,
J. G.
,
Wang
,
K.
, and
Chen
,
H. P.
,
2015
, “
MSW Oxy-Enriched Incineration Technology Applied in China: Combustion Temperature, Flue Gas Loss and Economic Considerations
,”
Waste Manag.
,
38
, pp.
149
156
.
6.
Costa
,
M.
,
Indrizzi
,
V.
, and
Massarotti
,
N.
,
2015
, “
Modeling and Optimization of an Incinerator Plant for the Reduction of the Environmental Impact
,”
Int. J. Numer. Method Heat Fluid Flow
,
25
(
6
), pp.
1463
1487
.
7.
Costa
,
M.
,
Massarotti
,
N.
,
Mauro
,
A.
,
Arpino
,
F.
, and
Rocco
,
F.
,
2016
, “
CFD Modelling of a RDF Incineration Plant
,”
Appl. Therm. Eng.
,
101
, pp.
710
719
.
8.
Luo
,
J. H.
,
Zhou
,
J. H.
,
Qian
,
G. R.
, and
Liu
,
J. R.
,
2014
, “
Effective Anaerobic Biodegradation of Municipal Solid Waste Fresh Leachate Using a Novel Pilot-Scale Reactor: Comparison Under Different Seeding Granular Sludge
,”
Bioresour. Technol.
,
165
, pp.
152
157
.
9.
Ye
,
J. X.
,
Mu
,
J. Y.
,
Cheng
,
X.
, and
Sun
,
D. Z.
,
2011
, “
Treatment of Fresh Leachate With High-Strength Organics and Calcium From Municipal Solid Waste Incineration Plant Using UASB Reactor
,”
Bioresour. Technol.
,
102
(
9
), pp.
5498
5503
.
10.
Liu
,
J. Y.
,
Luo
,
J. H.
,
Zhou
,
J. Z.
,
Liu
,
Q.
,
Qian
,
G. R.
, and
Xu
,
Z. P.
,
2012
, “
Inhibitory Effect of High-Strength Ammonia Nitrogen on Bio-Treatment of Landfill Leachate Using EGSB Reactor Under Mesophilic and Atmospheric Conditions
,”
Bioresour. Technol.
,
113
, pp.
239
243
.
11.
Liu
,
J. Y.
,
Bian
,
H. D.
, and
Cao
,
Y. L.
,
2011
, “
Quick Start-Up of EGSB Reactor Treating Fresh Leachate of Municipal Solid Waste
,”
J. Shanghai Univ.
,
15
(
3
), pp.
212
217
.
12.
Wang
,
X. J.
,
Han
,
J. J.
,
Chen
,
Z. W.
,
Jian
,
L.
,
Gu
,
X. Y.
, and
Lin
,
C. J.
,
2012
, “
Combined Processes of Two-Stage Fenton-Biological Anaerobic Filter-Biological Aerated Filter for Advanced Treatment of Landfill Leachate
,”
Waste Manag.
,
32
(
12
), pp.
2401
2405
.
13.
Bohdziewicz
,
J.
,
Neczaj
,
E.
, and
Kwarciak
,
A.
,
2008
, “
Landfill Leachate Treatment by Means of Anaerobic Membrane Bioreactor
,”
Desalination
,
221
(
1–3
), pp.
559
565
.
14.
Wu
,
P.
,
Ji
,
X. M.
,
Song
,
X. K.
, and
Shen
,
Y. L.
,
2013
, “
Nutrient Removal Performance and Microbial Community Analysis of a Combined ABR-MBR (CAMBR) Process
,”
Chem. Eng. J.
,
232
, pp.
273
279
.
15.
Imen
,
S.
,
Ismail
,
T.
,
Sami
,
S.
,
Fathi
,
A.
,
Khaled
,
M.
,
Ahmed
,
G.
, and
Latifa
,
B.
,
2009
, “
Characterization and Anaerobic Batch Reactor Treatment of Jebel Chakir Landfill Leachate
,”
Desalination
,
246
(
1–3
), pp.
417
424
.
16.
Xie
,
Z. F.
,
Wang
,
Z. W.
,
Wang
,
Q. Y.
,
Zhu
,
C. W.
, and
Wu
,
Z. C.
,
2014
, “
An Anaerobic Dynamic Membrane Bioreactor (AnDMBR) for Landfill Leachate Treatment: Performance and Microbial Community Identification
,”
Bioresour. Technol.
,
161
, pp.
29
39
.
17.
Dang
,
Y.
,
Zhang
,
R.
,
Wu
,
S. J.
,
Liu
,
Z.
,
Qiu
,
B.
,
Fang
,
Y. L.
, and
Sun
,
D. Z.
,
2014
, “
Calcium Effect on Anaerobic Biological Treatment of Fresh Leachate With Extreme High Calcium Concentration
,”
Int. Biodeterior. Biodegrad.
,
95
, pp.
76
83
.
18.
Dang
,
Y.
,
Lei
,
Y. Q.
,
Liu
,
Z.
,
Xue
,
Y. T.
,
Sun
,
D. Z.
,
Wang
,
L. Y.
, and
Dawn
,
E.
,
H.
,
2016
, “
Impact of Fulvic Acids on Bio-Methanogenic Treatment of Municipal Solid Waste Incineration Leachate
,”
Water Res.
,
106
, pp.
71
78
.
19.
Colussi
,
I.
,
Cortesi
,
A.
,
Della
,
V. L.
,
Gallo
,
F. K.
, and
Cano Robles
,
K.
,
2009
, “
Start-Up Procedures and Analysis of Heavy Metals Inhibition on Methanogenic Activity in EGSB Reactor
,”
Bioresour. Technol.
,
100
(
24
), pp.
6290
6294
.
20.
Rajagopal
,
R.
,
Masse
,
D. I.
, and
Singh
,
G.
,
2013
, “
A Critical Review on Inhibition of Anaerobic Digestion Process by Excess Ammonia
,”
Bioresour. Technol.
,
143
, pp.
632
641
.
21.
Xu
,
F.
,
Huang
,
Z. X.
,
Miao
,
H. F.
,
Ren
,
H. Y.
,
Zhao
,
M. X.
, and
Ruan
,
W. Q.
,
2013
, “
Identical Full-Scale Biogas-Lift Reactors (BLRs) With Anaerobic Granular Sludge and Residual Activated Sludge for Brewery Wastewater Treatment and Kinetic Modeling
,”
J. Environ. Sci.-China.
,
25
(
10
), pp.
2031
2040
.
22.
He
,
P. J.
,
Li
,
M.
,
Xu
,
S. Y.
, and
Shao
,
L. M.
,
2009
, “
Anaerobic Treatment of Fresh Leachate From a Municipal Solid Waste Incinerator by Upflow Blanket Filter Reactor
,”
Front. Environ. Sci. Eng.
,
3
(
4
), pp.
404
411
.
23.
APHA, AWWA, and WEF
,
2005
,
Standard Methods for the Examination of Water and Wastewater
,
21st ed.
,
American Public Health Association
,
Washington, DC
.
24.
Zhu
,
L.
,
Qi
,
H. Y.
,
Lv
,
M. L.
,
Kong
,
Y.
,
Yu
,
Y. W.
, and
Xu
,
X. Y.
,
2012
, “
Component Analysis of Extracellular Polymeric Substances (EPS) During Aerobic Sludge Granulation Using FTIR and 3D-EEM Technologies
,”
Bioresour. Technol.
,
124
, pp.
455
459
.
25.
Subramanyam
,
R.
, and
Mishra
,
I. M.
,
2013
, “
Characteristics of Methanogenic Granules Grown on Glucose in an Upflow Anaerobic Sludge Blanket Reactor
,”
Biosyst. Eng.
,
114
(
2
), pp.
113
123
.
26.
Frolund
,
B.
,
Palmgren
,
R.
,
Keiding
,
K.
, and
Nielsen
,
P. H.
,
1996
, “
Halkjer Nielsen Extraction of Extracellular Polymers From Activated Sludge Using a Cation Exchange Resin
,”
Water Res.
,
30
(
8
), pp.
1749
1758
.
27.
Dang
,
Y.
,
Ye
,
J. X.
,
Mu
,
Y. J.
,
Qiu
,
B.
, and
Sun
,
D. Z.
,
2013
, “
Effective Anaerobic Treatment of Fresh Leachate From MSW Incineration Plant and Dynamic Characteristics of Microbial Community in Granular Sludge
,”
Appl. Microbiol. Biotechnol.
,
97
(
24
), pp.
10563
10574
.
28.
Zuo
,
Z.
,
Wu
,
S. B.
,
Zhang
,
W. Q.
, and
Dong
,
R. J.
,
2013
, “
Effects of Organic Loading Rate and Effluent Recirculation on the Performance of Two-Stage Anaerobic Digestion of Vegetable Waste
,”
Bioresour. Technol.
,
146
, pp.
556
561
.
29.
Xiao
,
X. L.
,
Huang
,
Z. X.
,
Ruan
,
W. Q.
,
Yan
,
L. T.
,
Miao
,
H. F.
,
Ren
,
H. Y.
, and
Zhao
,
M. X.
,
2015
, “
Evaluation and Characterization During the Anaerobic Digestion of High-Strength Kitchen Waste Slurry Via a Pilot-Scale Anaerobic Membrane Bioreactor
,”
Bioresour. Technol.
,
193
, pp.
234
242
.
30.
Wu
,
J.
,
Zhou
,
H. M.
,
Li
,
H. Z.
,
Zhang
,
P. C.
, and
Jiang
,
J.
,
2009
, “
Impacts of Hydrodynamic Shear Force on Nucleation of Flocculent Sludge in Anaerobic Reactor
,”
Water Res.
,
43
(
12
), pp.
3029
3036
.
31.
Liao
,
X. F.
,
Zhu
,
S. Y.
,
Zhong
,
D. L.
,
Zhu
,
J. P.
, and
Liao
,
L.
,
2014
, “
Anaerobic Co-Digestion of Food Waste and Landfill Leachate in Single-Phase Batch Reactors
,”
Waste Manage.
,
34
(
11
), pp.
2278
2284
.
32.
Abbasi
,
T.
, and
Abbasi
,
S. A.
,
2012
, “
Formation and Impact of Granules in Fostering Clean Energy Production and Wastewater Treatment in Upflow Anaerobic Sludge Blanket (UASB) Reactors
,”
Renewable Sustainable Energy Rev.
,
16
(
3
), pp.
1696
1708
.
33.
Zhang
,
Y. B.
,
Ma
,
Y. G.
,
Quan
,
X.
,
Jing
,
Y. W.
, and
Dai
,
S. C.
,
2009
, “
Rapid Startup of a Hybrid UASB-AFF Reactor Using Bi-Circulation
,”
Chem. Eng. J.
,
155
(
1–2
), pp.
266
271
.
34.
Liu
,
Y.
,
Xu
,
H. L.
,
Yang
,
S. F.
, and
Tay
,
J. H.
,
2003
, “
Mechanisms and Models for Anaerobic Granulation in Upflow Anaerobic Sludge Blanket Reactor
,”
Water Res.
,
37
(
3
), pp.
661
673
.
35.
Liu
,
Y. Q.
,
Liu
,
Y.
, and
Tay
,
J. H.
,
2004
, “
The Effects of Extracellular Polymeric Substances on the Formation and Stability of Biogranules
,”
Appl. Microbiol. Biot.
,
65
(
2
), pp.
143
148
.
36.
Dlamini
,
A. M.
,
Peiris
,
P. S.
,
Bavor
,
J. H.
, and
Kailasapathy
,
K.
,
2009
, “
Rheological Characteristics of an Exopolysaccharide Produced by a Strain of Klebsiella Oxytoca
,”
J. Biosci. Bioeng.
,
107
(
3
), pp.
272
274
.
37.
Neyens
,
E.
,
Baeyens
,
J.
,
Dewil
,
R.
, and
De heyder
,
B.
,
2004
, “
Advanced Sludge Treatment Affects Extracellular Polymeric Substances to Improve Activated Sludge Dewatering
,”
J. Hazard. Mater.
,
106
(
2–3
), pp.
83
92
.
38.
Ismail
,
S. B.
,
De La Parra
,
C. J.
,
Temmink
,
H.
, and
Van Lier
,
J. B.
,
2010
, “
Extracellular Polymeric Substances (EPS) in Upflow Anaerobic Sludge Blanket (UASB) Reactors Operated Under High Salinity Conditions
,”
Water Res.
,
44
(
6
), pp.
1909
1917
.
You do not currently have access to this content.