Climatic change illustrates the need to new policy of load management. In this research, a special design of thermal energy storage (TES) system, with an appropriate storage medium that is suitable for residential and commercial buildings has been constructed and commissioned. Direct contact heat transfer is a significant factor to enhance the performance of TES. Numerous experimental runs were conducted to investigate the clathrate formation and the characteristics of the proposed TES cooling system; in addition, the effect of using nanofluid particles Al2O3 on the formation of clathrate under different operating parameters was evaluated. The experiments were conducted with a fixed amount of water 15 kg, mass of refrigerant to form clathrate of 6.5 kg, nanofluid particles concentration ranged from 0.5% to 2% and the mass flux of refrigerant varied from 150 to 300 kg/m2 s. The results indicate that there is a significant effect of using nanoparticles concentration on the charging time of the clathrate formation. The percentage of reduction in charging time of about 22% was achieved for high nanoparticles concentration. In addition, an enhancement in charging time by increasing the refrigerant flow rate reaches 38% when the mass flux varied from 200 to 400 kg/m2 s. New correlation describing the behavior of the temperatures with the charging time at different nanoparticles concentrations is presented.

References

References
1.
USEI
, 2014, “
How Much Energy is Consumed in the World by Each Sector?
,” U.S. Energy Information Administration, Washington, DC, accessed Sept. 20, 2014, http://www.eia.gov/tools/faqs/faq.cfm?id=447&t=3
2.
Pisello
,
A. L.
,
Rossi
,
F.
, and
Cotana
,
F.
,
2014
, “
Summer and Winter Effect of Innovative Cool Roof Tiles on the Dynamic Thermal Behavior of Buildings
,”
Energies
,
7
(
4
), pp.
2343
2361
.
3.
Studniorz
,
A.
,
Wolf
,
D.
,
Christidis
,
A.
, and
Tsatsaronis
,
G.
,
2018
, “
Active Phase Change Material Cold Storage in Off-Grid Telecommunication Base Stations: Potential Assessment of Primary Energy Savings
,”
ASME J. Energy Resour. Technol.
,
140
(11), p. 112007.
4.
Rossi
,
F.
,
Cotana
,
F.
,
Filipponi
,
M.
,
Nicolini
,
A.
,
Menon
,
S.
, and
Rosenfeld
,
A.
,
2013
, “
Cool Roof as a Strategy to Tackle Global Warming: Economical and Technical Opportunities
,”
Adv. Build. Energ. Res.
,
7
(
2
), pp.
254
268
.
5.
AlZahrani
,
A. A.
, and
Dincer
,
I.
,
2015
, “
Performance Assessment of an Aquifer Thermal Energy Storage System for Heating and Cooling Applications
,”
ASME J. Energy Resour. Technol.
,
138
(1), p. 011901.
6.
Rossi
,
F.
,
Pisello
,
A. L.
,
Nicolini
,
A.
,
Filipponi
,
M.
, and
Palombo
,
M.
,
2014
, “
Analysis of Retro Reflective Surfaces for Urban Heat Island Mitigation: A New Analytical Model
,”
Appl. Energy
,
114
, pp.
621
631
.
7.
Mollenhauer
,
E.
,
Christidis
,
A.
, and
Tsatsaronis
,
G.
,
2017
, “
Increasing the Flexibility of Combined Heat and Power Plants With Heat Pumps and Thermal Energy Storage
,”
ASME J. Energy Resour. Technol.
,
140
(2), p. 020907.
8.
Sreekanth
,
K. J.
,
Al Foraih
,
R.
,
Al-Mulla
,
A.
, and
Abdulrahman
,
B.
,
2018
, “
Feasibility Analysis of Energy Storage Technologies in Power Systems for Arid Region
,”
ASME J. Energy Resour. Technol.
,
141
(1), p. 011901.
9.
Kuznik
,
F.
,
David
,
D.
,
Johannes
,
K.
, and
Roux
,
J.
,
2011
, “
A Review on Phase Change Materials Integrated in Building Walls
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
379
391
.
10.
Kuliasha
,
M. A.
,
1983
, “
Opportunities for Improved Residential Cool Storage Systems: Opportunities in Thermal Energy Storage
,” R&D P-25, Electric Power Research Institute, Washington, DC, Report No. EPRI-EM 3159-SR.
11.
Wendland
,
R. D.
,
1990
, “
Commercial Cool Storage
,”
J. Energy Eng.
,
87
(
6
), pp.
18
33
.
12.
Rismanchi
,
B.
,
Saidur
,
R.
,
Masjuki
,
H. H.
, and
Mahlia
,
T. M. I.
,
2012
, “
Energetic, Economic and Environmental Benefits of Utilizing the Ice Thermal Storage Systems for Office Building Applications
,”
Energy Build.
,
50
, pp.
347
354
.
13.
Rismanchi
,
B.
,
Saidur
,
R.
,
Masjuki
,
H. H.
, and
Mahlia
,
T. M. I.
,
2012
, “
Thermodynamic Evaluation of Utilizing Different Ice Thermal Energy Storage Systems for Cooling Application in Office Buildings in Malaysia
,”
Energy Build.
,
53
, pp.
117
126
.
14.
Sun
,
Y.
,
Wang
,
S.
,
Xiao
,
F.
, and
Gao
,
D.
,
2013
, “
Peak Load Shifting Control Using Different Cold Thermal Energy Storage Facilities in Commercial Buildings
,”
Energy Convers. Manag.
,
71
, pp.
101
114
.
15.
Sebzali
,
M. J.
, and
Rubini
,
P. A.
,
2006
, “
Analysis of Ice Cool Thermal Storage for a Clinic Building in Kuwait
,”
Energy Convers. Manag.
,
47
(
18–19
), pp.
3417
3434
.
16.
Wutting
,
R.
,
2009
,
Phase Change Materials: Science and Applications
,
Springer
,
New York
.
17.
Seo
,
Y.
,
Tajima
,
H.
,
Yamasaki
,
A.
,
Takeya
,
S.
,
Ebinuma
,
T.
, and
Kiyono
,
F.
,
2004
, “
A New Method for Separating HFC-134a From Gas Mixtures Using Clathrate Hydrate Formation
,”
Environ. Sci. Technol.
,
38
(
17
), pp.
4635
4639
.
18.
Li
,
Z.
,
Kaihua
,
G.
,
Yongli
,
Z.
,
Bifen
,
S.
, and
Jiawei
,
Z.
,
2000
, “
Phase Equilibrium Calculation for Refrigerant Simple Gas Hydrates
,”
J. Eng. Thermophys.
,
21
(
1
), pp.
16
31
.
19.
Eslamimanesh
,
A.
,
Mohammadi
,
A. H.
, and
Richon
,
D.
,
2011
, “
Thermodynamic Model for Predicting Phase Equilibria of Simple Clathrate Hydrates of Refrigerants
,”
Chem. Eng. Sci.
,
66
(
21
), pp.
5439
5445
.
20.
Guo
,
K. H.
,
Shu
,
B. F.
, and
Zhang
,
Y.
,
1996
, “
Transient Behavior of Energy Charge Discharge and Solid-Liquid Phase Change in Mixed Gas-Hydrate Formation
,” Guangzhou Institute of Energy Conversion Chinese Academy of Sciences, Guangzhou, China.
21.
Uddin
,
M.
,
Coombe
,
D.
,
Law
,
D.
, and
Gunter
,
B.
,
2008
, “
Numerical Studies of Gas Hydrate Formation and Decomposition in a Geological Reservoir
,”
ASME J. Energy Resour. Technol.
,
130
(3), p. 032501.
22.
Liang
,
D.
,
Guo
,
K.
,
Wang
,
R.
, and
Fan
,
S.
,
2001
, “
Hydrate Equilibrium Data of 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1-Dichloro-1-Fluoroethane (HCFC-141b) and 1,1-Difluoroethane (HFC-152a)
,”
Fluid Phase Equilib.
,
187–188
, pp.
61
70
.
23.
Liang
,
D.
,
Wang
,
R.
,
Guo
,
K.
, and
Fan
,
S.
,
2001
, “
Prediction of Refrigerant Gas Hydrates Formation Conditions
,”
J. Therm. Sci.
,
10
(
1
), pp.
64
68
.
24.
Li
,
Z.
,
Kaihua
,
G.
,
Yongli
,
Z.
,
Bifen
,
S.
, and
Jiawei
,
Z.
,
2000
, “
Phase Equilibrium Calculation for Refrigerant Simple Gas Hydrates
,”
J. Eng. Thermophys.
,
21
(
1
), pp.
13
16
.
25.
Li
,
Z.
,
Kaihua
,
G.
,
Zhao
,
Y.
, and
Bifen
,
S.
,
2000
, “
Phase Equilibrium Calculation for Binary Refrigerant Gas Hydrates
,”
J. Eng. Thermophys.
,
21
(
2
), pp.
269
272
.
26.
Mori
,
T.
, and
Mori Mori
,
Y. H.
,
1989
, “
Characterization of Gas Hydrate Formation in Direct Contact Cool Storage Process
,”
Int. J. Refrig.
,
12
(
5
), pp.
259
265
.
27.
Wu
,
J.
, and
Wang
,
S.
,
2012
, “
Research on Cool Storage and Release Characteristics of R134a Gas Hydrate With Additive
,”
Energy Build.
,
45
, pp.
99
105
.
28.
Gadalla
,
M.
,
Dincer
,
I.
, and
Zafar
,
S.
,
2016
, “
Experimental Evaluation of Thermal Properties of R134a Clathrates Based PCMs for Cooling Applications
,”
Int. J. Refrig.
,
72
, pp. 12–26.
You do not currently have access to this content.