Oil–water dispersed flow occurs commonly in the petroleum industry during the production and transportation of crudes. Phase inversion occurs when the dispersed phase grows into the continuous phase and the continuous phase becomes the dispersed phase caused by changes in the composition, interfacial properties, and other factors. Production equipment, such as pumps and chokes, generates shear in oil–water mixture flow, which has a strong effect on phase inversion phenomena. The objective of this paper is to investigate the effects of shear intensity and water cut (WC) on the phase inversion region and also the droplet size distribution. A state-of-the-art closed-loop two phase (oil–water) flow facility including a multipass gear pump and a differential dielectric sensor (DDS) is used to identify the phase inversion region. Also, the facility utilizes an in-line droplet size analyzer (a high speed camera), to record real-time videos of oil–water emulsion to determine the droplet size distribution. The experimental data for phase inversion confirm that as shear intensity increases, the phase inversion occurs at relatively higher dispersed phase fractions. Also the data show that oil-in-water emulsion requires larger dispersed phase volumetric fraction for phase inversion as compared with that of water-in-oil emulsion under the same shear intensity conditions. Experiments for droplet size distribution confirm that larger droplets are obtained for the water continuous phase, and increasing the dispersed phase volume fraction leads to the creation of larger droplets.

References

References
1.
Torres
,
C. F.
,
Mohan
,
R. S.
,
Gomez
,
L. E.
, and
Shoham
,
O.
,
2016
, “
Oil-Water Flow Pattern Transition Prediction in Horizontal Pipes
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022904
.
2.
Gavrielatos
,
I.
,
Dabirian
,
R.
,
Mohan
,
R.
, and
Shoham
,
O.
,
2018
, “
Oil/Water Emulsions Stabilized by Nanoparticles of Different Wettabilities
,”
ASME J. Fluids Eng.
,
141
(2), p.
021301
.
3.
Gavrielatos
,
I.
,
Dabirian
,
R.
,
Mohan
,
R.
, and
Shoham
,
O.
,
2018
, “
Nanoparticle and Surfactant Oil/Water Emulsions—Is Different Treatment Required
,”
SPE Western Regional Meeting
, Garden Grove, CA, Apr. 22–26, SPE Paper No.
SPE-190114-MS
.
4.
Dabirian
,
R.
,
Cui
,
S.
,
Gavrielatos
,
I.
,
Mohan
,
R.
, and
Shoham
,
R.
,
2018
, “
Evaluation of Models for Droplet Shear Effect of Centrifugal Pump
,”
ASME Paper No.
FEDSM2018-83318.
5.
Nunez
,
C.
,
Dabirian
,
R.
,
Gavrielatos
,
I.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2018
, “
Effect of Particle Wettability on Mineral Oil-Distilled Water Emulsion Stability
,”
Eighth World Congress on Particle Technology
, Orlando, FL, Apr. 22–26, Paper No. 66(b).https://www.researchgate.net/publication/323543269_Effect_of_Particle_Wettability_on_Mineral_Oil-Distilled_Water_Emulsion_Stability
6.
Gavrielatos
,
I.
,
Dabirian
,
R.
,
Mohan
,
R.
, and
Shoham
,
O.
,
2017
, “
Separation Kinetics of Oil/Water Emulsions Stabilized by Nanoparticles
,”
ASME
Paper No. FEDSM2017-69112.
7.
Taleghani
,
N. D.
, and
Tyagi
,
M.
,
2017
, “
Impacts of Major Offshore Oil Spill Incidents on Petroleum Industry and Regional Economy
,”
ASME J. Energy Resour. Technol.
,
139
(2), p.
022913
.
8.
Bannwart
,
A. C.
,
Rodriguez
,
O. M. H.
,
Carvalho
,
C. H. M.
,
Wang
,
I. S.
, and
Vara
,
R. M. O.
,
2004
, “
Flow Patterns in Heavy Crude Oil-Water Flow
,”
ASME J. Energy Resour. Technol.
,
126
(
3
), pp.
184
189
.
9.
Fairuzov
,
Y. V.
,
Arenas-Medina
,
P.
,
Jerdejo-Fierro
,
J.
, and
Gonzalez-Islas
,
R.
,
2000
, “
Flow Pattern Transitions in Horizontal Pipelines Carrying Oil-Water Mixtures: Full-Scale Experiments
,”
ASME J. Energy Resour. Technol.
,
122
(
4
), pp.
169
176
.
10.
Shang
,
W.
, and
Sarica
,
C.
,
2013
, “
A Model for Temperature Prediction for Two-Phase Oil/Water Stratified Flow
,”
ASME J. Energy Resour. Technol.
,
135
(3), p.
032906
.
11.
Shi
,
H.
,
Cai
,
J.
, and
Jepson
,
W. P.
,
2001
, “
Oil-Water Two-Phase Flows in Large-Diameter Pipelines
,”
ASME J. Energy Resour. Technol.
,
123
(
4
), pp.
270
276
.
12.
Najmi
,
K.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
, and
Cremaschi
,
S.
,
2016
, “
The Effect of Viscosity on Low Concentration Particle Transport in Single-Phase (Liquid) Horizontal Pipes
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032902
.
13.
Piela
,
K.
,
Delfos
,
R.
,
Ooms
,
G.
,
Westerweel
,
J.
, and
Oliemans
,
R. V. A.
,
2008
, “
One the Phase Inversion Process in an Oil-Water Pipe Flow
,”
Int. J. Multiphase Flow
,
34
(
7
), pp.
665
677
.
14.
Yeo
,
L. Y.
,
Matar
,
O. K.
,
Perez de Ortiz
,
E. S.
, and
Hewitt
,
G. F.
,
2002
, “
A Simple Predictive Tool for Modelling Phase Inversion in Liquid–Liquid Dispersions
,”
Chem. Eng. Sci.
,
57
(
6
), pp.
1069
1072
.
15.
Brauner
,
N.
, and
Ullmann
,
A.
,
2002
, “
Modeling of Phase Inversion Phenomenon in Two-Phase Pipe Flows
,”
Int. J. Multiphase Flow
,
28
(
7
), pp.
1177
1204
.
16.
Pacek
,
A.
,
Nienow
,
A.
, and
Moore
,
I.
,
1994
, “
On the Structure of Turbulent Liquid–Liquid Dispersed Flows in an Agitated Vessel
,”
Chem. Eng. Sci.
,
49
(
20
), pp.
3485
3498
.
17.
Sajjadi
,
S.
,
Zerfa
,
M.
, and
Brooks
,
B.
,
2000
, “
Morphological Change in Drop Structure With Time for Abnormal Polymer/Water/Surfactant Dispersions
,”
Langmuir
,
16
(
26
), pp.
10015
10019
.
18.
Liu
,
L.
,
Matar
,
O.
,
Perez de Ortiz
,
E.
, and
Hewitt
,
G.
,
2005
, “
Experimental Investigation of Phase Inversion in a Stirred Vessel Using LIF
,”
Chem. Eng. Sci.
,
60
(
1
), pp.
85
94
.
19.
AlShammari
,
A.
,
2013
, “
Centrifugal Pump Shear Effects on Oil Continuous and Water Continuous Dispersed Flow
,” M.S. thesis, The University of Tulsa, Tulsa, OK.
20.
Pereyra
,
E.
,
2011
, “
Modeling of Integrated Compact Multiphase Separation System (CMSS)
,” Ph.D. dissertation, The University of Tulsa, Tulsa, OK.
21.
Xiang
,
D.
,
Wang
,
S.
,
Mohan
,
R.
,
Shoham
,
O.
, and
Marrelli
,
J.
,
2009
, “
A Modular Differential Dielectric Sensor (DDS) for Use in Multiphase Separation, Process Measurement and Control—Part I: Analytical Modeling
,”
ASME
Paper No. OMAE2009-80214.
22.
Xiang
,
D.
,
Wang
,
S.
,
Mohan
,
R.
,
Shoham
,
O.
, and
Marrelli
,
J.
,
2009
, “
A Modular Differential Dielectric Sensor (DDS) for Use in Multiphase Separation, Process Measurement and Control—Part II: Experimental Investigation
,”
ASME
Paper No. OMAE2009-80215.
23.
Li, H.
, 2010, “
Modeling and Applications of Differential Dielectric Sensor (DDS) for Multiphase Measurement
,” Ph.D. dissertation, The University of Tulsa, Tulsa, OK.
24.
Li
,
H.
,
Mohan
,
R.
,
Marrelli
,
J. D.
, and
Wang
,
S.
,
2010
, “
Differential Dielectric Sensor Model and Its Applications for Water and Oil Flow
,”
ASME
Paper No. IMECE2010-39104.
25.
Parra
,
M. V.
,
2010
, “
Methodology of Oil-Water Dispersions Flow Characterization Using the Dispersion Characterization Rig (DCR)
,” M.S. thesis, The University of Tulsa, Tulsa, OK.
26.
Zhang
,
M.
,
Wang
,
A.
,
Mohan
,
R. S.
,
Shoham
,
O.
, and
Gao
,
H.
,
2015
, “
Shear Effects on Phase Inversion in Oil-Water Flow
,”
ASME
Paper No. IMECE2015-52076.
27.
Zhang
,
M.
,
Wang
,
A.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2015
, “
Shear Effects of Gear Pump on Oil-Water Flow
,”
SPE Latin American and Caribbean Petroleum Engineering Conference
, Quito, Ecuador, Nov. 18–20, SPE Paper No.
SPE-177206-MS
.
28.
Avila
,
C.
,
2006
, “
Interfacial Phenomena in Oil-Water Dispersions
,” Ph.D. dissertation, The University of Tulsa, Tulsa, OK.
29.
Tidhar
,
M.
,
Merchuk
,
J. C.
,
Sembira
,
A. N.
, and
Wolf
,
D.
,
1986
, “
Characteristics of a Motionless Mixer for Dispersion of Immiscible Fluids—II: Phase Inversion of Liquid-Liquid Systems
,”
Chem. Eng. Sci.
,
41
(
3
), pp.
457
462
.
30.
Rajesh
,
K.
,
Murugesan
,
K.
, and
Nanjaian
,
M.
,
2012
, “
Multiple Emulsion: A Review
,”
Int. J. Recent Adv. Pharm. Res.
,
2
(
1
), pp.
9
19
.
You do not currently have access to this content.