Compressor stations in natural gas networks should perform such that time-varying demands of customers are fulfilled while all of the system constraints are satisfied. Power consumption of compressor stations impose the most operational cost to a gas network so their optimal performance will lead to significant money saving. In this paper, the gas network transient optimization problem is addressed. The objective function is the sum of the compressor's power consumption that should be minimized where compressor speeds and the value status are decision variables. This objective function is nonlinear which is subjected to nonlinear and combinatorial constraints including both discrete and continuous variables. To handle this challenging optimization problem, a novel approach based on using two different structure intelligent algorithms, namely the particle swarm optimization (PSO) and cultural algorithm (CA), is utilized to find the optimum of the decision variables. This approach removes the necessity of finding an explicit expression for the power consumption of compressors as a function of decision variables as well as the calculation of objective function derivatives. The objective function and constraints are evaluated in the transient condition by a fully implicit finite difference numerical method. The proposed approach is applied on a real gas network where simulation results confirm its accuracy and efficiency.

References

References
1.
Lior
,
N.
,
2016
, “
Exergy, Energy, and Gas Flow Analysis of Hydrofractured Shale Gas Extraction
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
061601
.
2.
Ying
,
Z.
,
Zhanghua
,
L.
,
Abdelal
,
G. F.
, and
Tiejun
,
L.
,
2017
, “
Numerical and Experimental Investigation on Flow Capacity and Erosion Wear of Blooey Line in Gas Drilling
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
054501
.
3.
Tong
,
Z.
,
Zhao
,
G.
, and
Wei
,
S.
,
2017
, “
A Novel Intermittent Gas Lifting and Monitoring System Toward Liquid Unloading for Deviated Wells in Mature Gas Field
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052906
.
4.
Seales
,
M. B.
,
Ertekin
,
T.
, and
Yilin Wang
,
J.
,
2017
, “
Recovery Efficiency in Hydraulically Fractured Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(4), p.
042901
.
5.
Teng
,
B.
,
Cheng
,
L.
,
Huang
,
S. H.
, and
Li
,
H.
,
2017
, “
Production Forecast for Shale Gas Reservoirs With Fast Marching-Succession of Steady States Method
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032913
.
6.
Babu
,
B. V.
,
Angira
,
R.
,
Chakole
,
P. G.
, and
Syed Mubeen
,
J. H.
,
2003
, “
Optimal Design of Gas Transmission Network Using Differential Evolution
,” Birla Institute of Technology & Science, Rajasthan, India.
7.
Sanaye
,
S.
, and
Mahmoudimehr
,
J.
,
2013
, “
Optimal Design of a Natural Gas Transmission Network Layout
,”
Chem. Eng. Res. Des.
,
91
(
12
), pp.
2465
2476
.
8.
Wu
,
S.
,
1998
, “
Steady-State Simulation and Fuel Cost Minimization of Gas Pipeline Networks
,” Ph.D. thesis, University of Houston, Houston, TX.
9.
Mahmoudimehr
,
J.
, and
Sanaye
,
S.
,
2014
, “
Minimization of Fuel Consumption of Natural Gas Compressor Stations With Similar and Dissimilar Turbo-Compressor Units
,”
J. Energy Eng.
,
140
(
1
), p.
04013001
.
10.
Wong
,
P.
, and
Larson
,
R.
,
1968
, “
Optimization of Natural-Gas Pipeline Systems Via Dynamic Programming
,”
IEEE Trans. Autom. Control
,
13
(
5
), pp.
475
481
.
11.
Lall
,
H. S.
, and
Percell
,
P. B.
,
1990
, “
A Dynamic Programming Based Gas Pipeline Optimizer
,”
Analysis and Optimization of Systes: Proceedings of the 9th International Conference Antibes, June 12–15, 1990
,
A.
Bensoussan
and
J. L.
Lions
, eds.,
Springer Berlin
, pp.
123
132
.
12.
Carter
,
R. G.
,
1998
, “
Pipeline Optimization: Dynamic Programming after 30 Years
,”
PSIG Annual Meeting
, Denver, CO, Oct. 28–30, Paper No. PSIG-9803.
13.
Ríos-Mercado
,
R. Z.
,
Kim
,
S.
, and
Boyd
,
E. A.
,
2006
, “
Efficient Operation of Natural Gas Transmission Systems: A Network-Based Heuristic for Cyclic Structures
,”
Comput. Oper. Res.
,
33
(
8
), pp.
2323
2351
.
14.
Percell
,
P. B.
, and
Ryan
,
M. J.
,
1987
, “
Steady State Optimization of Gas Pipeline Network Operation
,” PSIG Annual Meeting, Tulsa, OK, Oct. 22–23, Paper No. PSIG-8703.
15.
Flores-Villarreal
,
H. J.
, and
Ríos-Mercado
,
R. Z.
,
2003
, “
Computational Experience With a GRG Method for Minimizing Fuel Consumption on Cyclic Natural Gas Networks
,”
Computational Methods in Circuits and Systems Applications
, WSEAS Press, pp.
90
94
.
16.
Tabkhi
,
F.
,
Pibouleau
,
L.
,
Azzaro-Pantel
,
C.
, and
Domenech
,
S.
,
2009
, “
Total Cost Minimization of a High-Pressure Natural Gas Network
,”
ASME J. Energy Resour. Technol.
,
131
(
4
), p.
043002
.
17.
Nguyen
,
H. H.
, and
Chan
,
C. W.
,
2006
, “
Applications of Artificial Intelligence for Optimization of Compressor Scheduling
,”
Eng. Appl. Artif. Intell.
,
19
(
2
), pp.
113
126
.
18.
MohamadiBaghmolaei
,
M.
,
Mahmoudy
,
M.
,
Jafari
,
D.
,
MohamadiBaghmolaei
,
R.
, and
Tabkhi
,
F.
,
2014
, “
Assessing and Optimization of Pipeline System Performance Using Intelligent Systems
,”
J. Nat. Gas Sci. Eng.
,
18
, pp.
64
76
.
19.
Sanaye
,
S.
, and
Mahmoudimehr
,
J.
,
2012
, “
Minimization of Fuel Consumption in Cyclic and Non-Cyclic Natural Gas Transmission Networks: Assessment of Genetic Algorithm Optimization Method as an Alternative to Non-Sequential Dynamic Programing
,”
J. Taiwan Inst. Chem. Eng.
,
43
(
6
), pp.
904
917
.
20.
Chebouba
,
A.
,
Yalaoui
,
F.
,
Smati
,
A.
,
Amodeo
,
L.
,
Younsi
,
K.
, and
Tairi
,
A.
,
2009
, “
Optimization of Natural Gas Pipeline Transportation Using Ant Colony Optimization
,”
Comput. Oper. Res.
,
36
(
6
), pp.
1916
1923
.
21.
Zheng
,
Z.
, and
Wu
,
C.
,
2012
, “
Power Optimization of Gas Pipelines Via an Improved Particle Swarm Optimization Algorithm
,”
Pet. Sci.
,
9
(
1
), pp.
89
92
.
22.
Wu
,
X.
,
Li
,
C.
,
Jia
,
W.
, and
He
,
Y.
,
2014
, “
Optimal Operation of Trunk Natural Gas Pipelines Via an Inertia-Adaptive Particle Swarm Optimization Algorithm
,”
J. Nat. Gas Sci. Eng.
,
21
, pp.
10
18
.
23.
Furey
,
B.
,
1993
, “
A Sequential Quadratic Programming-Based Algorithm for Optimization of Gas Networks
,”
Automatica
,
29
(
6
), pp.
1439
1450
.
24.
Osiadacz Andrzej
,
J.
,
1998
, “
Hierarchical Control of Transient Flow in Natural Gas Pipeline Systems
,”
Int. Trans. Oper. Res.
,
5
(
4
), pp.
285
302
.
25.
Carter
,
R. G.
, and
Rachford
,
H. H.
, Jr.
,
2003
, “
Optimizing Line-Pack Management to Hedge against Future Load Uncertainty
,” PSIG Annual Meeting, Bern, Switzerland, Oct. 15–17, Paper No. PSIG-0306.
26.
Krishnaswami
,
P.
,
Chapman
,
K. S.
, and
Abbaspour
,
M.
,
2004
, “
Compressor Station Optimization for Linepack Maintenance
,” PSIG Annual Meeting, Palm Springs, CA, Oct. 20–22.
27.
Abbaspour
,
M.
, and
Chapman
,
K. S.
,
2008
, “
Nonisothermal Transient Flow in Natural Gas Pipeline
,”
ASME J. Appl. Mech.
,
75
(
3
), p.
031018
.
28.
Abbaspour
,
M.
,
Krishnaswami
,
P.
, and
Chapman
,
K. S.
,
2007
, “
Transient Optimization in Natural Gas Compressor Stations for Linepack Operation
,”
ASME J. Energy Resour. Technol.
,
129
(
4
), pp.
314
324
.
29.
Domschke
,
P.
,
Geißler
,
B.
,
Kolb
,
O.
,
Lang
,
J.
,
Martin
,
A.
, and
Morsi
,
A.
,
2011
, “
Combination of Nonlinear and Linear Optimization of Transient Gas Networks
,”
INFORMS J. Comput.
,
23
(
4
), pp.
605
617
.
30.
Zhang
,
X.
,
Wu
,
C.
, and
Zuo
,
L.
,
2016
, “
Minimizing Fuel Consumption of a Gas Pipeline in Transient States by Dynamic Programming
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
193
203
.
31.
Kiuchi
,
T.
,
1994
, “
An Implicit Method for Transient Gas Flows in Pipe Networks
,”
Int. J. Heat Fluid Flow
,
15
(
5
), pp.
378
383
.
32.
Sanaye
,
S.
, and
Mahmoudimehr
,
J.
,
2012
, “
Technical Assessment of Isothermal and Non-Isothermal Modelings of Natural Gas Pipeline Operational Conditions
,”
Oil Gas Sci. Technol.
,
67
(
3
), pp.
435
449
.
33.
Chaczykowski
,
M.
, and
Osiadacz
,
A.
,
2001
, “
Simulation of Non-Isothermal Transient Gas Flow in a Pipeline
,”
Arch. Thermodyn.
,
22
(1–2), pp.
51
70
http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BGPK-0055-2063.
34.
Madoliat
,
R.
,
Khanmirza
,
E.
, and
Pourfard
,
A.
,
2017
, “
Application of PSO and Cultural Algorithms for Transient Analysis of Natural Gas Pipeline
,”
J. Pet. Sci. Eng.
,
149
, pp.
504
514
.
35.
Wu
,
S.
,
Ríos-Mercado
,
R. Z.
,
Boyd
,
E. A.
, and
Scott
,
L. R.
,
2000
, “
Model Relaxations for the Fuel Cost Minimization of Steady-State Gas Pipeline Networks
,”
Math. Comput. Modell.
,
31
(
2–3
), pp.
197
220
.
36.
Woldeyohannes
,
A. D.
, and
Majid
,
M. A. A.
,
2011
, “
Simulation Model for Natural Gas Transmission Pipeline Network System
,”
Simul. Modell. Pract. Theory
,
19
(
1
), pp.
196
212
.
37.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
IEEE
International Conference on Neural Networks
, Perth, WA, Nov. 27–Dec. 1, pp.
1942
1948
.
38.
Poli
,
R.
,
Kennedy
,
J.
, and
Blackwell
,
T.
,
2007
, “
Particle Swarm Optimization
,”
Swarm Intell.
,
1
(
1
), pp.
33
57
.
39.
Suresh
,
K.
,
Ghosh
,
S.
,
Kundu
,
D.
,
Sen
,
A.
,
Das
,
S.
, and
Abraham
, A.,
2008
, “
Inertia-Adaptive Particle Swarm Optimizer for Improved Global Search
,”
Eighth International Conference on Intelligent Systems Design and Applications
, Kaohsiung, Taiwan, Nov. 26–28, pp.
253
258
.
40.
Haji Agha Mohammad Zarbaf
,
S. E.
,
Norouzi
,
M.
,
Allemang
,
R. J.
,
Hunt
,
V. J.
, and
Helmicki
,
A.
,
2017
, “
Stay Cable Tension Estimation of Cable-Stayed Bridges Using Genetic Algorithm and Particle Swarm Optimization
,”
J. Bridge Eng.
,
22
(
10
), p.
05017008
.
41.
Reynolds
,
R. G.
, and
Sverdlik
,
W.
,
1994
, “
Problem Solving Using Cultural Algorithms
,”
First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence
, Orlando, FL, June 27–29, pp.
645
650
.
42.
Xidong
,
J.
, and
Reynolds
,
R. G.
,
1999
, “
Using Knowledge-Based Evolutionary Computation to Solve Nonlinear Constraint Optimization Problems: A Cultural Algorithm Approach
,”
Congress on Evolutionary Computation-CEC99
, Washington, DC, July 6–9, pp.
1672
1678
.
43.
Reynolds
,
R. G.
, and
Peng
,
B.
,
2005
, “
Cultural Algorithms: Computational Modeling of How Cultures Learn to Solve Problems: An Engineering Example
,”
Cybern. Syst.
,
36
(
8
), pp.
753
771
.
You do not currently have access to this content.