Biogas is a renewable source of energy produced by anaerobic digestion of organic material and composed mainly of methane (CH4) and carbon dioxide (CO2). Despite its lower heating value, biogas can still replace fossil fuels in several engineering stationary power generation and other industrial applications. Although numerous published studies were devoted to advance our understating of biogas combustion, experimental data of some parameters such as turbulent burning velocity (St) under certain operating conditions is still lacking. The present study aims to experimentally determine biogas turbulent burning velocity under normal temperature and pressure conditions. Turbulent premixed biogas–air flame was ignited at the center of a 29 L fan-stirred spherical combustion chamber of nearly homogeneous and isotropic turbulence. Test conditions consisted of varying turbulence intensity and biogas surrogate composition. Outwardly propagating biogas flames were tracked and imaged using Schlieren imaging technique. The results showed that, by increasing turbulence and reducing methane percentage in the surrogate, the flammability of the mixture shrinked. In addition, the curve fits of biogas turbulent burning velocity versus the equivalence ratio exhibited two different trends. The peak of turbulent burning velocity shifted away from nearly lean equivalence ratio toward the stoichiometric at a fixed turbulence intensity and higher CH4 percentage in the surrogate. However, for the same biogas surrogate composition, the peak of turbulent burning velocity shifted away from stoichiometric toward leaner equivalence ratio with increased turbulence intensity.

References

References
1.
Saediamiri
,
M.
, and
Birouk
,
M.
,
2017
, “
Flame Stability Limits of Low Swirl Burner: Effect of Fuel Composition and Burner Geometry
,”
Fuel
,
208
, pp.
410
422
.
2.
Arthur
,
R.
,
Baidoo
,
M. F.
, and
Antwi
,
E.
,
2011
, “
Biogas as a Potential Renewable Energy Source: A Ghanaian Case Study
,”
Renewable Energy.
,
36
(
5
), pp.
1510
1516
.
3.
Wilson
,
D. A.
, and
Lyons
,
K. M.
,
2009
, “
On Diluted-Fuel Combustion Issues in Burning Biogas Surrogates
,”
ASME J. Energy Resour. Technol.
,
131
(
4
), p.
41802
.
4.
Surendra
,
K. C.
,
Takara
,
D.
,
Hashimoto
,
A. G.
, and
Khanal
,
S. K.
,
2014
, “
Biogas as a Sustainable Energy Source for Developing Countries: Opportunities and Challenges
,”
Renewable Sustainable Energy Rev.
,
31
, pp.
846
859
.
5.
Rahman Md
,
M.
,
Hasan
,
M. M.
,
Paatero
,
J. V.
, and
Lahdelma
,
R.
,
2014
, “
Hybrid Application of Biogas and Solar Resources to Fulfill Household Energy Needs: A Potentially Viable Option in Rural Areas of Developing Countries
,”
Renewable Energy
,
68
, pp.
35
45
.
6.
Babatunde
,
S.
,
2015
, “
Development and Testing of Biogas-Petrol Blend as an Alternative Fuel for Spark Ignition Engine
,”
Int. J. Sci. Technol. Res.
,
4
(
9
), pp.
179
186
.http://www.ijstr.org/final-print/sep2015/Development-And-Testing-Of-Biogas-petrol-Blend-As-An-Alternative-Fuel-For-Spark-Ignition-Engine.pdf
7.
Sudheesh
,
K.
, and
Mallikarjuna
,
J. M.
,
2010
, “
Diethyl Ether as an Ignition Improver for Biogas Homogeneous Charge Compression Ignition (HCCI) Operation—An Experimental Investigation
,”
Energy
,
35
(
9
), pp.
3614
3622
.
8.
Bora
,
B. J.
, and
Saha
,
U. K.
, 22
2015
, “
Comparative Assessment of a Biogas Run Dual Fuel Diesel Engine With Rice Bran Oil Methyl Ester, Pongamia Oil Methyl Ester and Palm Oil Methyl Ester as Pilot Fuels
,”
Renew. Energy
,
81
, pp.
490
498
.
9.
McKendry, P.
, 2002, “
Energy Production From Biomass (Part 2): Conversion Technologies
,”
Bioresour. Technol.
,
83
(1), pp. 47–54.
10.
Gómez-Montoya
,
J. P.
,
Cacua-Madero
,
K. P.
,
Iral-Galeano
,
L.
, and
Amell-Arrieta
,
A. A.
,
2013
, “
Effect of Biogas Enriched With Hydrogen on the Operation and Performance of a Diesel-Biogas Dual Engine
,”
C.T.F Cienc. Tecnol. Futuro
,
5
(
2
), pp.
61
72
.
11.
Lee
,
C. E.
, and
Hwang
,
C. H.
,
2007
, “
An Experimental Study on the Flame Stability of LFG and LFG-Mixed Fuels
,”
Fuel
,
86
(
5–6
), pp.
649
655
.
12.
Ballachey
,
G. E.
, and
Johnson
,
M. R.
,
2013
, “
Prediction of Blowoff in a Fully Controllable Low-Swirl Burner Burning Alternative Fuels: Effects of Burner Geometry, Swirl, and Fuel Composition
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3193
3201
.
13.
Yousufuddin
,
S.
,
Venkateswarlu
,
K.
, and
Sastry
,
G. R. K.
,
2012
, “
Effect of Compression Ratio and Equivalence Ratio on the Emission Characteristics of a Hydrogen-Ethanol Fuelled Spark Ignition Engine
,”
Int. J. Adv. Sci. Technol.
,
40
, pp.
91
100
.http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=B0B688F31FC026A98E80B7B92229C938?doi=10.1.1.640.6574&rep=rep1&type=pdf
14.
Cardona
,
C. A.
, and
Amell
,
A. A.
,
2013
, “
Laminar Burning Velocity and Interchangeability Analysis of Biogas/C3H8/H2 With Normal and Oxygen-Enriched Air
,”
Int. J. Hydrogen Energy
,
38
(
19
), pp.
7994
8001
.
15.
Porpatham
,
E.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2013
, “
Effect of Swirl on the Performance and Combustion of a Biogas Fuelled Spark Ignition Engine
,”
Energy Convers. Manag.
,
76
, pp.
463
471
.
16.
Anggono
,
W.
,
Wardana
,
I. N. G.
,
Lawes
,
M.
, and
Hughes
,
K. J.
,
2013
, “
Effect of Inhibitors on Biogas Laminar Burning Velocity and Flammability Limits in Spark Ignited Premix Combustion
,”
Int. J. Eng. Technol.
,
5
, pp.
4980
4987
.
17.
Hinton
,
N.
, and
Stone
,
R.
,
2014
, “
Laminar Burning Velocity Measurements of Methane and Carbon Dioxide Mixtures (Biogas) Over Wide Ranging Temperatures and Pressures
,”
Fuel
,
116
, pp.
743
750
.
18.
Anggono
,
W.
,
Wardana
,
I.
,
Hughes
,
K. J.
,
Wahyudi
,
S.
, and
Hamidi
,
N.
,
2013
, “
Laminar Burning Velocity and Flammability Characteristics of Biogas in Spark Ignited Premix Combustion at Reduced Pressure
,”
Appl. Mech. Mater.
,
376
, pp.
79
85
.
19.
Zhu
,
D. L.
,
Egolfopoulos
,
F. N.
, and
Law
,
C. K.
,
1989
, “
Experimental and Numerical Determination of Laminar Flame Speeds of Methane/(Ar, N2, CO2)-Air Mixtures as Function of Stoichiometry, Pressure, and Flame Temperature
,”
Proc. Symp. Combust.
,
22
(
1
), pp.
1537
1545
.
20.
Xie
,
Y.
,
Wang
,
J.
,
Zhang
,
M.
,
Gong
,
J.
,
Jin
,
W.
, and
Huang
,
Z.
,
2013
, “
Experimental and Numerical Study on Laminar Flame Characteristics of Methane Oxy-Fuel Mixtures Highly Diluted With CO2
,”
Energy Fuels
,
27
(
10
), pp.
6231
6237
.
21.
Hu
,
X.
,
Yu
,
Q.
, and
Liu
,
J.
,
2016
, “
Chemical Effect of CO2 on the Laminar Flame Speeds of Oxy-Methane Mixtures in the Condition of Various Equivalence Ratios and Oxygen Concentrations
,”
Int. J. Hydrogen Energy
,
41
(
33
), pp.
15068
15077
.
22.
Di Benedetto, A.
,
Di Sarli, V.
,
Salzano, E.
,
Cammarota, F.
, and
Russo, G.
, 2009,  
Explosion Behavior of CH4/O2/N2/CO2 and H2/O2/N2/CO2 Mixtures
,”
Int. J. Hydrogen Energy
,
34
(16), pp. 6970–6978.https://www.sciencedirect.com/science/article/pii/S0360319909008489
23.
Ratna Kishore
,
V.
,
Duhan
,
N.
,
Ravi
,
M. R.
, and
Ray
,
A.
,
2008
, “
Measurement of Adiabatic Burning Velocity in Natural Gas-like Mixtures
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
10
16
.
24.
Ji
,
M.
,
Miao
,
H.
,
Jiao
,
Q.
,
Huang
,
Q.
, and
Huang
,
Z.
,
2009
, “
Flame Propagation Speed of CO2 Diluted Hydrogen-Enriched Natural Gas and Air Mixtures
,”
Energy Fuels
,
23
(
10
), pp.
4957
4965
.
25.
Elia
,
M.
,
Ulinski
,
M.
, and
Metghalchi
,
M.
,
2001
, “
Laminar Burning Velocity of Methane–Air–Diluent Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), p.
190
.
26.
Wei
,
Z. L.
,
Leung
,
C. W.
,
Cheung
,
C. S.
, and
Huang
,
Z. H.
,
2016
, “
Effects of H2 and CO2 Addition on the Heat Transfer Characteristics of Laminar Premixed Biogas–Hydrogen Bunsen Flame
,”
Int. J. Heat Mass Transf.
,
98
, pp.
359
366
.
27.
Chen
,
Z.
,
Qin
,
X.
,
Xu
,
B.
,
Ju
,
Y.
, and
Liu
,
F.
,
2007
, “
Studies of Radiation Absorption on Flame Speed and Flammability Limit of CO2 Diluted Methane Flames at Elevated Pressures
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2693
2700
.
28.
Mazas
,
A. N.
,
Lacoste
,
D. A.
, and
Schuller
,
T.
,
2010
, “
Experimental and Numerical Investigation on the Laminar Flame Speed of CH4/O2 Mixtures Diluted With CO2 and H2O
,”
ASME
Paper No. GT2010-22512
.
29.
Nonaka
,
H. O. B.
, and
Pereira
,
F. M.
,
2016
, “
Experimental and Numerical Study of CO2 Content Effects on the Laminar Burning Velocity of Biogas
,”
Fuel
,
182
, pp.
382
390
.
30.
Hu
,
X.
,
Yu
,
Q.
,
Liu
,
J.
, and
Sun
,
N.
,
2014
, “
Investigation of Laminar Flame Speeds of CH4/O2/CO2 Mixtures at Ordinary Pressure and Kinetic Simulation
,”
Energy
,
70
, pp.
626
634
.
31.
Zhen
,
H. S.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2014
, “
A Comparison of the Heat Transfer Behaviors of Biogas-H2 Diffusion and Premixed Flames
,”
Int. J. Hydrogen Energy
,
39
(
2
), pp.
1137
1144
.
32.
Shy
,
S. S.
,
Yang
,
S. I.
,
Lin
,
W. J.
, and
Su
,
R. C.
,
2005
, “
Turbulent Burning Velocities of Premixed CH4/Diluent/Air Flames in Intense Isotropic Turbulence With Consideration of Radiation Losses
,”
Combust. Flame.
,
143
(
1–2
), pp.
106
118
.
33.
Wang
,
J.
,
Yu
,
S.
,
Nie
,
Y.
,
Jin
,
W.
, and
Huang
,
Z.
,
2015
, “
Measurement on Turbulent Premixed Flame Structure of CH4/H2/Air Mixtures With CO2 Dilution
,”
SAE
Paper No. 2015-01-1960.
34.
Cohé
,
C.
,
Chauveau
,
C.
,
Gökalp
,
I.
, and
Kurtuluş
,
D. F.
,
2009
, “
CO2 Addition and Pressure Effects on Laminar and Turbulent Lean Premixed CH4 Air Flames
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1803
1810
.
35.
Kobayashi
,
H.
,
Hagiwara
,
H.
,
Kaneko
,
H.
, and
Ogami
,
Y.
,
2007
, “
Effects of CO2 Dilution on Turbulent Premixed Flames at High Pressure and High Temperature
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1451
1458
.
36.
Bagdanavicius
,
A.
,
Bowen
,
P. J.
,
Syred
,
N.
,
Kay
,
P.
,
Crayford
,
A.
,
Sims
,
G.
, and
Wood
,
J.
,
2010
, “
Burning Velocities of Alternative Gaseous Fuels at Elevated Temperature and Pressure
,”
AIAA J.
,
48
(
2
), pp.
317
329
.
37.
Fabbro
,
S. C.
,
2012
, “
An Experimental Test Facility for Studying the Effects of Turbulence on the Evaporation of Fuel Droplets at Elevated Pressure and Temperature Conditions
,” MSc thesis, The University of Manitoba, Winnipeg, MB, Canada.
38.
Birouk
,
M.
, and
Fabbro
,
S. C.
,
2013
, “
Droplet Evaporation in a Turbulent Atmosphere at Elevated Pressure—Experimental Data
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1577
1584
.
39.
Peters
,
N.
,
2000
, “
Turbulent Combustion
,”
Cambridge University Press
,
Cambridge, UK
.
40.
Ayache
,
A.
,
2017
, “
Experimental Measurement of Turbulent Burning Velocity of Premixed Biogas Flame
,”
MSc thesis
, The University of Manitoba, Winnipeg, MB, Canada.https://mspace.lib.umanitoba.ca/xmlui/handle/1993/32711
41.
Verwey
,
C. M.
,
2017
, “
An Experimental Investigation of the Effect of Fuel Droplet Size on the Vaporization Process in a Turbulent Environment at Elevated Temperature and Pressure
,”
MSc thesis
, The University of Manitoba, Winnipeg, MB, Canada.https://mspace.lib.umanitoba.ca/xmlui/handle/1993/32338
42.
Bradley
,
D.
,
Haq
,
M. Z.
,
Hicks
,
R. A.
,
Kitagawa
,
T.
,
Lawes
,
M.
,
Sheppard
,
C. G. W.
, and
Woolley
,
R.
,
2003
, “
Turbulent Burning Velocity, Burned Gas Distribution, and Associated Flame Surface Definition
,”
Combust. Flame
,
133
(
4
), pp.
415
430
.
43.
Morley
,
C.
,
2005
, “
GASEQ: A Chemical Equilibrium Program for WINDOWS, Ver. 0.79/
,” Gaseq, epub.
44.
Hayakawa
,
A.
,
Miki
,
Y.
,
Nagano
,
Y.
, and
Kitagawa
,
T.
,
2012
, “
Analysis of Turbulent Burning Velocity of Spherically Propagating Premixed Flame With Effective Turbulence Intensity
,”
J. Therm. Sci. Technol.
,
7
(
4
), pp.
507
521
.
45.
Wilson
,
D. A.
, and
Lyons
,
K. M.
,
2008
, “
Effects of Dilution and Co-Flow on the Stability of Lifted Non-Premixed Biogas-like Flames
,”
Fuel
,
87
(
3
), pp.
405
413
.
You do not currently have access to this content.