Considering the potential of using concentrating solar power systems to supply the heat required for the allothermal gasification process, this study analyzes hydrogen production in such a system by assuming typical radiative heat flux profiles for a receiver of a central tower concentrated solar power (CSP) plant. A detailed model for allothermal gasification in a downdraft fixed bed tubular reactor is proposed. This considers solid and gas phases traveling in parallel flow along the reactor. Results for temperature and gas profile show a reasonable quantitative agreement with experimental works carried out under similar conditions. Aiming to maximize H2 yield, eight Gaussian flux distributions, similar to those typical of CSP systems, each with a total power of 8 kW (average heat flux 20 kW/m2), but with varying peak locations, were analyzed. The results show a maximum producer gas yield and a chemical efficiency of 134.1 kmol/h and 45.9% respectively, with a molar concentration of 47.2% CO, 46.9% H2, 3.3% CH4, and 2.6% CO2 for a distribution peak at z = 1.4 m, thus relatively close to the flue gas outlet. Hydrogen production and gas yield using this configuration were 4% and 2.9% higher than the achieved using the same power but homogeneously distributed. Solar to chemical efficiencies ranged from 38.9% to 45.9%, with a minimum when distribution peak was at the reactor center. These results are due to high temperatures during the latter stage of the process favoring char gasification reactions.

References

References
1.
Ladanai
,
S.
, and
Vinterbäck
,
J.
,
2009
, “
Global Potential of Sustainable Biomass for Energy
,” SLU, Institutionen för energi och Tek. Swedish University of Agricultural Sciences, Department of Energy and Technology, Uppsala, Sweden, p.
32
.
2.
Bridgwater
,
A. V. V.
,
1995
, “
The Technical and Economic Feasibility of Biomass Gasification for Power Generation
,”
Fuel
,
74
(
5
), pp.
631
653
.
3.
Zhang
,
W.
,
2010
, “
Automotive Fuels From Biomass Via Gasification
,”
Fuel Process. Technol.
,
91
(
8
), pp.
866
876
.
4.
Lenis
,
Y. A.
, and
Pérez
,
J. F.
,
2014
, “
Gasification of Sawdust and Wood Chips in a Fixed Bed Under Autothermal and Stable Conditions
,”
Energy Sources, Part A
,
36
(
23
), pp.
2555
2565
.
5.
Pérez
,
J. F.
,
Melgar
,
A.
, and
Benjumea
,
P. N.
,
2012
, “
Effect of Operating and Design Parameters on the Gasification/Combustion Process of Waste Biomass in Fixed Bed Downdraft Reactors: An Experimental Study
,”
Fuel
,
96
, pp.
487
496
.
6.
Islam
,
S.
, and
Dincer
,
I.
,
2018
, “
A Comparative Study of Syngas Production From Two Types of Biomass Feedstocks With Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p. 092002.
7.
Di Blasi
,
C.
,
2000
, “
Dynamic Behaviour of Stratified Downdraft Gasfiers
,”
Chem. Eng. Sci.
,
55
(
15
), pp.
2931
2944
.
8.
Di Blasi
,
C.
,
2004
, “
Modeling Wood Gasification in a Countercurrent Fixed-Bed Reactor
,”
AIChE J.
,
50
(
9
), pp.
2306
2319
.
9.
Di Blasi
,
C.
, and
Branca
,
C.
,
2013
, “
Modeling a Stratified Downdraft Wood Gasifier With Primary and Secondary Air Entry
,”
Fuel
,
104
, pp.
847
860
.
10.
Yucel
,
O.
, and
Hastaoglu
,
M. A.
,
2016
, “
Kinetic Modeling and Simulation of Throated Downdraft Gasifier
,”
Fuel Process. Technol.
,
144
, pp.
145
154
.
11.
Hobbs
,
M. L.
,
Radulovic
,
P. T.
, and
Smoot
,
L. D.
,
1992
, “
Modeling Fixed-Bed Coal Gasifiers
,”
AIChE J.
,
38
(
5
), pp.
681
702
.
12.
Musinguzi
,
W. B.
,
Okure
,
M. A. E.
,
Sebbit
,
A.
,
Løvås
,
T.
, and
da Silva
,
I.
,
2014
, “
Thermodynamic Modeling of Allothermal Steam Gasification in a Downdraft Fixed-Bed Gasifier
,”
Adv. Mater. Res
,
875–877
, pp.
1782
1793
.
13.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
Influence of Selected Gasification Parameters on Syngas Composition From Biomass Gasification
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
41803
.
14.
Iliuta
,
I.
,
Leclerc
,
A.
, and
Larachi
,
F.
,
2010
, “
Allothermal Steam Gasification of Biomass in Cyclic Multi-Compartment Bubbling Fluidized-Bed Gasifier/Combustor—New Reactor Concept
,”
Bioresour. Technol
,
101
(
9
), pp.
3194
3208
.
15.
Olaleye
,
A. K.
,
Adedayo
,
K. J.
,
Wu
,
C.
,
Nahil
,
M. A.
,
Wang
,
M.
, and
Williams
,
P. T.
,
2014
, “
Experimental Study, Dynamic Modelling, Validation and Analysis of Hydrogen Production From Biomass Pyrolysis/Gasification of Biomass in a Two-Stage Fixed Bed Reaction System
,”
Fuel
,
137
, pp.
364
374
.
16.
Garcia
,
H. J.
,
2011
, “
Modelación de La Gasificación de Biomasa En Un Reactor de Lecho Fijo
,” Universidad Nacional de Colombia, Bogotá, Colombia.
17.
Romero
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Concentrating Solar Thermal Power and Thermochemical Fuels
,”
Energy Environ. Sci.
,
5
(
11
), p.
9234
.
18.
Kalinci
,
Y.
,
Hepbasli
,
A.
, and
Dincer
,
I.
,
2013
, “
Performance Assessment of Hydrogen Production From a Solar-Assisted Biomass Gasification System
,”
Int. J. Hydrogen Energy
,
38
(
14
), pp.
6120
6129
.
19.
Piatkowski
,
N.
,
Wieckert
,
C.
,
Weimer
,
A. W.
, and
Steinfeld
,
A.
,
2011
, “
Solar-Driven Gasification of Carbonaceous Feedstock—A Review
,”
Energy Environ. Sci.
,
4
(
1
), pp.
73
82
.
20.
Piatkowski
,
N.
, and
Steinfeld
,
A.
,
2011
, “
Solar Gasification of Carbonaceous Waste Feedstocks in a Packed-Bed Reactor-Dynamic Modeling and Experimental Validation
,”
AIChE J.
,
57
(
12
), pp.
3522
3533
.
21.
Melchior
,
T.
,
Perkins
,
C.
,
Lichty
,
P.
,
Weimer
,
A. W.
, and
Steinfeld
,
A.
,
2009
, “
Solar-Driven Biochar Gasification in a Particle-Flow Reactor
,”
Chem. Eng. Process. Process Intensif.
,
48
(
8
), pp.
1279
1287
.
22.
Maag
,
G.
, and
Steinfeld
,
A.
,
2010
, “
Design of a 10 MW Particle-Flow Reactor for Syngas Production by Steam-Gasification of Carbonaceous Feedstock Using Concentrated Solar Energy
,”
Energy Fuels
,
24
(
12
), pp.
6540
6547
.
23.
Kruesi
,
M.
,
Jovanovic
,
Z. R.
,
dos Santos
,
E. C.
,
Yoon
,
H. C.
, and
Steinfeld
,
A.
,
2013
, “
Solar-Driven Steam-Based Gasification of Sugarcane Bagasse in a Combined Drop-Tube and Fixed-Bed Reactor—Thermodynamic, Kinetic, and Experimental Analyses
,”
Biomass Bioenergy
,
52
, pp.
173
183
.
24.
Lichty
,
P.
,
Perkins
,
C.
,
Woodruff
,
B.
,
Bingham
,
C.
, and
Weimer
,
A.
,
2010
, “
Rapid High Temperature Solar Thermal Biomass Gasification in a Prototype Cavity Reactor
,”
ASME J. Sol. Energy Eng.
,
132
(
1
), p.
11012
.
25.
Kruesi
,
M.
,
Jovanovic
,
Z. R.
, and
Steinfeld
,
A.
,
2014
, “
A Two-Zone Solar-Driven Gasifier Concept: Reactor Design and Experimental Evaluation With Bagasse Particles
,”
Fuel
,
117
(
Pt. A
), pp.
680
687
.
26.
Siebers
,
D. L.
, and
Kraabel
,
J. S.
,
1984
,
Estimating Convective Energy Losses From Solar Central Receivers
, Sandia National Laboratories,
Albuquerque, NM
.
27.
Di Blasi
,
C.
,
Signorelli
,
G.
, and
Portoricco
,
G.
,
1999
, “
Countercurrent Fixed-Bed Gasification of Biomass at Laboratory Scale
,”
Ind. Eng. Chem. Res.
,
38
(
7
), pp.
2571
2581
.
28.
Mandl
,
C.
,
Obernberger
,
I.
, and
Biedermann
,
F.
,
2010
, “
Modelling of an Updraft Fixed-Bed Gasifier Operated With Softwood Pellets
,”
Fuel
,
89
(
12
), pp.
3795
3806
.
29.
Pérez
,
J.
,
2009
,
Gasificación de Biomasa: Estudios Teórico Experimentales En Lecho Fijo Equicorriente
, Editorial Universidad de Antioquia,
Medellín, Colombia
.
30.
Buekens
,
A. G.
, and
Schoeters
,
J. G.
,
1985
, “
Modelling of Biomass Gasification
,”
Fundamentals of Thermochemical Biomass Conversion
, R. P. Overend, T. A. Milne, and L. K. Mudge, eds., Elsevier Applied Science Publishers, Brussels, Belgium, pp.
619
689
.
31.
Bryden
,
K. M.
, and
Ragland
,
K. W.
,
1996
, “
Numerical Modeling of a Deep, Fixed Bed Combustor
,”
Energy Fuels
,
10
(
2
), pp.
269
275
.
32.
Z'Graggen
,
A.
,
Haueter
,
P.
,
Maag
,
G.
,
Vidal
,
A.
,
Romero
,
M.
, and
Steinfeld
,
A.
,
2007
, “
Hydrogen Production by Steam-Gasification of Petroleum Coke Using Concentrated Solar Power-III. Reactor Experimentation With Slurry Feeding
,”
Int. J. Hydrogen Energy
,
32
(
8
), pp.
992
996
.
33.
Gómez
,
A.
,
Klose
,
W.
, and
Rincón
,
S.
,
2008
,
Pirólisis de Biomasa: Cuesco de Palma de Aceite
, Kassel University Press, Kassel, Germany.
34.
Li
,
Y. H.
, and
Chen
,
H. H.
,
2018
, “
Analysis of Syngas Production Rate in Empty Fruit Bunch Steam Gasification With Varying Control Factors
,”
Int. J. Hydrogen Energy
,
43
(
2
), pp.
667
675
.
You do not currently have access to this content.