Wind power is one of the most popular renewable energy sources (RES), characterized by rapid growth of installed power in the energy mix of many countries. Usually, the influence of wind technologies on the depletion of nonrenewable resources is evaluated taking into account the consumption of energy and materials in the construction phase. However, it should be noted that the major drawback of wind energy is its random availability which also influences the consumption of resources. This consumption results from the necessity of compensation for random operation of wind power plants by conventional ones operating in off-design point. In the present work, thermo-ecological cost (TEC) is proposed for the evaluation of the performance of wind generation systems operating with random accessibility of wind energy. The presented analysis focuses on the estimation of additional non-renewable energy consumption due to the part-load operation of the conventional power units. Different strategies are assumed for the compensation for the hourly wind power variations. The presented results of TEC analysis show that the part of TEC resulting from induced losses can be significant. The authors prove that, within the assessment of wind turbines, the induced losses cannot be omitted.

References

References
1.
The European Parliament and The Council of The European Union, 2017, “
Directive 2009/28/EC of the European Parliament
,” The European Parliament and The Council of The European Union, Brussels, Belgium, accessed Feb. 14, 2017, http://eur-lex.europa.eu/legal-content/EN/TXT/?q=1487081346577&uri=CELEX:32009L0028
2.
European Commission, 2017, “
Renewable Energy Progress Report
,” European Commission, Brussels, Belgium, accessed Feb. 14, 2017, http://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:52015DC0293
3.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p. 050801.
4.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p. 051201.
5.
Tabassum-Abbasi
,
Premalatha
,
M.
,
Abbasi
,
T.
, and
Abbasi
,
S. A.
,
2014
, “
Wind Energy: Increasing Deployment, Rising Environmental Concerns
,”
Renewable Sustainable Energy Rev.
,
31
, pp.
270
288
.
6.
Saidur
,
R.
,
Rahim
,
N. A.
,
Islam
,
M. R.
, and
Solangi
,
K. H.
,
2011
, “
Environmental Impact of Wind Energy
,”
Renewable Sustainable Energy Rev.
,
15
(
5
), pp.
2423
2430
.
7.
Yang
,
Y.
,
Solgaard
,
H. S.
, and
Haider
,
W.
,
2016
, “
Wind, Hydro or Mixed Renewable Energy Source: Preference for Electricity Products When the Share of Renewable Energy Increases
,”
Energy Policy
,
97
, pp.
521
531
.
8.
Dai
,
K.
,
Bergot
,
A.
,
Liang
,
C.
,
Xiang
,
W.
, and
Huang
,
Z.
,
2015
, “
Environmental Issues Associated With Wind Energy—A Review
,”
Renewable Energy
,
75
, pp.
911
921
.
9.
Leung
,
D. Y. C.
, and
Yang
,
Y.
,
2012
, “
Wind Energy Development and Its Environmental Impact: A Review
,”
Renewable Sustainable Energy Rev.
,
16
(
1
), pp.
1031
1039
.
10.
Kasaei
,
M. J.
,
Gandomkar
,
M.
, and
Nikoukar
,
J.
,
2017
, “
Optimal Operational Scheduling of Renewable Energy Sources Using Teaching–Learning Based Optimization Algorithm by Virtual Power Plant
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p. 062003.
11.
Troy
,
N.
,
Denny
,
E.
, and
O'Malley
,
M.
,
2010
, “
Base-Load Cycling on a System With Significant Wind Penetration
,”
IEEE Trans. Power Syst.
,
25
(
2
), pp.
1088
1097
.
12.
Gutiérrez-Martín
,
F.
,
Da Silva-Álvarez
,
R. A.
, and
Montoro-Pintado
,
P.
,
2013
, “
Effects of Wind Intermittency on Reduction of CO2 Emissions: The Case of the Spanish Power System
,”
Energy
,
61
, pp.
108
117
.
13.
Turconi
,
R.
,
O'Dwyer
,
C.
,
Flynn
,
D.
, and
Astrup
,
T.
,
2014
, “
Emissions From Cycling of Thermal Power Plants in Electricity Systems With High Penetration of Wind Power: Life Cycle Assessment for Ireland
,”
Appl. Energy
,
131
, pp.
1
8
.
14.
Oates
,
D. L.
, and
Jaramillo
,
P.
,
2013
, “
Production Cost and Air Emissions Impacts of Coal Cycling in Power Systems With Large-Scale Wind Penetration
,”
Environ. Res. Lett.
,
8
, p. 024022.
15.
Inhaber
,
H.
,
2011
, “
Why Wind Power Does Not Deliver the Expected Emissions Reductions
,”
Renewable Sustainable Energy Rev.
,
15
(
6
), pp.
2557
2562
.
16.
Wagman
,
D.
,
2013
, “
Rethinking Wind's Impact on Emissions and Cycling Costs
,”
Power Mag.
,
157
(3), pp.
62
66
.
17.
Berent-Kowalska
,
G.
,
Kacprowska
,
J.
,
Moskal
,
I.
, and
Jurgaś
,
A.
,
2016
, “
Energy From Renewable Sources in 2015
,” Report of Polish Central Statistical Office, Poland.
18.
Urząd Regulacji Energetyki [Polish Energy Regulatory Office], 2018, “Potencjał krajowy OZE w liczbach [Domestic potential of RES in figures],” Energy Regulatory Office, Warsaw, Poland, accessed Nov. 10, 2018, https://www.ure.gov.pl/pl/rynki-energii/energia-elektryczna/odnawialne-zrodla-ener/potencjal-krajowy-oze/5753,Moc-zainstalowana-MW.html
19.
Polskie Sieci Energetyczne [Polish Transmission System Operator], 2018, “Dane systemowe [Data on the power system],” Polish Transmission System Operator, Warszawska, Poland, accessed Nov. 10, 2018, https://www.pse.pl/dane-systemowe
20.
Kancelaria Sejmu Rzeczpospolitej Polskiej [The Office of Sejm of the Republic of Poland], 2018, “Ustawa z dnia 10 kwietnia 1997 r. - Prawo energetyczne [The Act of 10 April 1997 - Energy Law],” Dziennik Ustaw Rzeczpospolitej Polskiej [Journal of Laws of the Republic of Poland],
54
, p. 348.
21.
Szargut
,
J.
,
2005
,
Exergy Method: Technical and Ecological Applications
,
WIT Press
,
Southampton-Boston, MA
.
22.
Szargut
,
J.
,
Zie˛bik
,
A.
, and
Stanek
,
W.
,
2002
, “
Depletion of the Non-Renewable Natural Exergy Resources as a Measure of the Ecological Cost
,”
Energy Convers. Manage.
,
43
(
9–12
), pp.
1149
1163
.
23.
Stanek
,
W.
,
2012
, “
Examples of Application of Exergy Analysis for the Evaluation of Ecological Effects in Thermal Processes
,”
Int. J. Thermodyn.
,
15
, pp.
11
16
.
24.
Czarnowska
,
L.
,
2014
, “
Thermo-Ecological Cost of Products With Emphasis on External Environmental Costs
,” Ph.D. dissertation, Silesian University of Technology, Gliwice, Poland.
25.
Stanek
,
W.
,
2009
,
Method of Evaluation of Ecological Effects in Thermal Processes With the Application of Exergy Analysis
,
Silesian University of Technology Press
,
Gliwice, Poland
.
26.
Szargut
,
J.
, and
Stanek
,
W.
,
2007
, “
Thermo-Ecological Optimization of a Solar Collector
,”
Energy
,
32
(
4
), pp.
584
90
.
27.
Stanek
,
W.
,
Czarnowska
,
L.
, and
Gazda
,
W.
, “
Thermo-Ecological Cost of Electricity From Renewable Energy Sources
,”
Fourth International Conference on Contemporary Problems of Thermal Engineering
, Katowice, Poland, Sept. 14–16, pp.
1105
1120
.
28.
Dudek
,
G.
,
2002
, “
Ekonomiczny Rozdział Obciążeń z Zastosowaniem Algorytmów Ewolucyjnych
,” Ph.D. dissertation, Cze˛stochowa University of Technology, Cze˛stochowa, Poland.
29.
Koytsoumpa
,
E.-I.
,
Bergins
,
C.
,
Buddenberg
,
T.
,
Wu
,
S.
,
Sigurbjörnsson
,
Ó.
,
Tran
,
K. C.
, and
Kakaras
,
E.
,
2016
, “
The Challenge of Energy Storage in Europe: Focus on Power to Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p. 042002.
30.
Upendra Roy
,
B. P.
, and
Rengarajan
,
N.
,
2016
, “
Feasibility Study of an Energy Storage System for Distributed Generation System in Islanding Mode
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p. 011901.
31.
Stanek
,
W.
,
Szargut
,
J.
, and
Czarnowska
,
L.
,
2016
, “
Pro-Ecological Exergy Tax of Electricity
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p. 061604.
You do not currently have access to this content.