In this paper, a pragmatic and consistent framework has been developed and validated to accurately predict reservoir performance in tight sandstone reservoirs by coupling the dynamic capillary pressure with gas production models. Theoretically, the concept of pseudo-mobile water saturation, which is defined as the water saturation between irreducible water saturation and cutoff water saturation, is proposed to couple dynamic capillary pressure and stress-induced permeability to form an equation matrix that is solved by using the implicit pressure and explicit saturations (IMPES) method. Compared with the conventional methods, the newly developed model predicts a lower cumulative gas production but a higher reservoir pressure and a higher flowing bottomhole pressure at the end of the stable period. Physically, a higher gas production rate induces a greater dynamic capillary pressure, while both cutoff water saturation and stress-induced permeability impose a similar impact on the dynamic capillary pressure, though the corresponding degrees are varied. Due to the dynamic capillary pressure, pseudo-mobile water saturation controlled by the displacement pressure drop also affects the gas production. The higher the gas production rate is, the greater the effect of dynamic capillary pressure on the cumulative gas production, formation pressure, and flowing bottomhole pressure will be. By taking the dynamic capillary pressure into account, it can be more accurate to predict the performance of a gas reservoir and the length of stable production period, allowing for making more reasonable development schemes and thus improving the gas recovery in a tight sandstone reservoir.

References

1.
Yang
,
T.
,
Zhang
,
G.
,
Liang
,
K.
,
Zheng
,
M.
, and
Guo
,
B.
,
2012
, “
The Exploration of Global Tight Sandstone Gas and Forecast of the Development Tendency in China
,”
Eng. Sci.
,
14
(
6
), pp.
64
68
.
2.
Rushing
,
J. A.
,
Newsham
,
K. E.
,
Van Fraassen
,
K. C.
,
Mehta
,
S. A.
, and
Moore
,
G. R.
,
2008
, “
Laboratory Measurements of Gas-Water Interfacial Tension at HP/HT Reservoir Conditions
,”
CIPC/SPE Technology Symposium Joint Conference
, Calgary, AB, June 16-19, SPE Paper No.
114516
.
3.
Tsakiroglou
,
C.
,
Ioannidis
,
M.
,
Amirtharaj
,
E.
, and
Vizika
,
O.
,
2009
, “
A New Approach for the Characterization of the Pore Structure of Dual Porosity Rocks
,”
Chem. Eng. Sci.
,
64
(
5
), pp.
847
859
.
4.
Rashid
,
F.
,
Glover
,
P.
,
Lorinczi
,
P.
,
Collier
,
R.
, and
Lawrence
,
J.
,
2015
, “
Porosity and Permeability of Tight Carbonate Reservoir Rocks in the North of Iraq
,”
J. Pet. Sci. Eng.
,
133
(9), pp.
147
161
.
5.
Xi
,
K.
,
Cao
,
Y.
,
Haile
,
B. J.
,
Zhu
,
R.
,
Jahern
,
J.
,
Bjørlykke
,
K.
,
Zhang
,
X.
, and
Hellevang
,
H.
,
2016
, “
How Does the Pore-Throat Size Control the Reservoir Quality and Oiliness of Tight Sandstones? the Case of the Lower Cretaceous Quantou Formation in the Southern Songliao Basin, China
,”
Mar. Pet. Geol.
,
76
, pp.
1
15
.
6.
Zhang
,
S.
,
Xian
,
X.
,
Zhou
,
J.
,
Liu
,
G.
,
Guo
,
Y.
,
Zhao
,
Y.
, and
Lu
,
Z.
,
2018
, “
Experimental Study of the Pore Structure Characterization in Shale With Different Particle Size
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
054502
.
7.
Zhao
,
M.
,
Zhao
,
X.
, and
Yang
,
D.
,
2018
, “
Preparation and Characterization of Chemical Agents for Augmenting Injectivity in Low Permeability Reservoirs
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032914
.
8.
Golf-Racht
,
T. V.
,
1974
, “
Gas Production and Interference Effects
,”
SPE-European Spring Meeting of AIME
, Amsterdam, The Netherland, May 29–30, SPE Paper No.
4833
.
9.
Rahman
,
M. M.
,
Rahman
,
M. K.
, and
Rahman
,
S. S.
,
2002
, “
An Analytical Model for Production Estimation From Hydraulically Fractured Tight-Gas Reservoirs
,”
SPE Asia Pacific Oil and Gas Conference and Exhibition
, Melbourne, Australia, Oct. 8–10, SPE Paper No.
77901
.
10.
Yuan
,
H.
,
Bhuiyan
,
M.
, and
Xu
,
J. F.
,
2012
, “
A Case Study to Evaluate Shale Gas Performance Models With Actual Well Production Data
,”
SPE Canadian Unconventional Resources Conference
, Calgary, AB, Oct. 30–Nov. 1, SPE Paper No.
162598
.
11.
Cheng
,
C.
, and
Li
,
K.
,
2014
, “
Comparison of Models Correlating Cumulative Oil Production and Water Cut
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
032901
.
12.
Hassanizadeh
,
S.
,
Celia
,
M.
, and
Dahle
,
H.
,
2002
, “
Dynamic Effect in the Capillary Pressure-Saturation Relationship and Its Impact on Unsaturated Flow
,”
Vadose Zone J.
,
1
(
2
), pp.
38
57
.
13.
Hassanizadeh
,
S.
, and
Gray
,
W.
,
1993
, “
Thermodynamic Basis of Capillary Pressure in Porous Media
,”
Water Resour. Res.
,
29
(
10
), pp.
3389
3405
.
14.
Abreu
,
E.
, and
Viera
,
J.
,
2017
, “
Computing Numerical Solutions of the Pseudo-Parabolic Buckley–Leverett Equation With Dynamic Capillary Pressure
,”
Math. Comput. Simul.
,
137
, pp.
29
48
.
15.
El-Amin
,
M. F.
,
2017
, “
Stability Analysis of the Modified IMPES Scheme for Two-Phase Flow in Porous Media Including Dynamic Pressure
,”
Procedia Comput. Sci.
,
108C
, pp.
2328
2332
.
16.
Hsu
,
S. Y.
,
Huang
,
V.
,
Park
,
S. W.
, and
Hilpert
,
M.
,
2017
, “
Water Infiltration Into Prewetted Porous Media: Dynamic Capillary Pressure and Green-AMPT Modeling
,”
Adv. Water Resour.
,
106
, pp.
60
67
.
17.
Zhang
,
H.
, and
Zegeling
,
P. A.
,
2017
, “
Numerical Investigations of Two-Phase Flow With Dynamic Capillary Pressure in Porous Media Via a Moving Mesh Method
,”
J. Comput. Phys.
,
345
, pp.
510
527
.
18.
Abbasi
,
J.
,
Ghaedi
,
M.
, and
Riazi
,
M.
,
2018
, “
A New Numerical Approach for Investigation of the Effects of Dynamic Capillary Pressure in Imbibition Process
,”
J. Pet. Sci. Eng.
,
162
, pp.
44
54
.
19.
Milišic
,
J. P.
,
2018
, “
The Unsaturated Flow in Porous Media With Dynamic Capillary Pressure
,”
J. Differential Equations
,
264
(
9
), pp.
5629
5658
.
20.
Zhou
,
Y.
,
Helland
,
J.
, and
Jettestuen
,
E.
,
2013
, “
Dynamic Capillary Pressure Curves From Pore-Scale Modeling in Mixed-Wet-Rock Images
,”
SPE J.
,
15
(
4
), pp.
634
645
.
21.
Liu
,
G.
,
Bai
,
Y.
,
Gu
,
D.
,
Lu
,
Y.
, and
Yang
,
D.
,
2018
, “
Determination of Static and Dynamic Characteristics of Microscopic Pore-Throat Structure in a Tight Oil-Bearing Sandstone Formation
,”
AAPG Bull.
,
102
(
9
), pp.
1867
1892
.
22.
Zhang
,
H.
,
He
,
S.
,
Jiao
,
C.
,
Luan
,
G.
,
Mo
,
S.
, and
Lei
,
G.
,
2015
, “
Investigation of Dynamic Effect of Capillary Pressure in Ultra-Low Permeability Sandstones
,”
Indian Geotech. J.
,
45
(
1
), pp.
79
88
.
23.
Kalaydjian
,
F.
,
1992
, “
Dynamic Capillary Pressure Curve for Water/Oil Displacement in Porous Media: Theory vs. Experiment
,”
67th SPE Annual Technical Conference and Exhibition
, Washington, DC, Oct. 4–7, SPE Paper No.
24813
.
24.
Fan
,
Z.
,
Cheng
,
L.
,
Yang
,
D.
, and
Li
,
X.
,
2018
, “
Optimization of Well Pattern Parameters for Waterflooding in an Anisotropic Formation
,”
Math. Geosci.
(epub).
25.
Tian
,
L.
,
Yang
,
D.
,
Zheng
,
S.
,
Wang
,
D.
, and
Feng
,
B.
,
2018
, “
Parametric Optimization of Vector Well Patterns for Hydraulically Fractured Horizontal Wells in Tight Sandstone Reservoirs
,”
J. Pet. Sci. Eng.
,
162
, pp.
469
479
.
26.
Topp
,
G. C.
,
Klute
,
A.
, and
Peters
,
D. B.
,
1967
, “
Comparison of Water Content-Pressure Head Data Obtained by Equilibrium, Steady-State, and Unsteady-State Methods
,”
Soil Sci. Soc. Am. J.
,
31
(
3
), pp.
312
314
.
27.
Gray
,
W. G.
, and
Hassanizadeh
,
S. M.
,
1991
, “
Unsaturated Flow Theory Including Interfacial Phenomena
,”
Water Resour. Res.
,
27
(
8
), pp.
1855
1863
.
28.
Stauffer
,
F.
,
1978
, “
Time Dependence of the Relations Between Capillary Pressure, Water Content and Conductivity During Drainage of Porous Media
,”
International Association of Hydraulic Engineering and Research
, pp.
335
352
.
29.
Brooks
,
R.
, and
Corey
,
A.
,
1964
,
Hydraulic Properties of Porous Media
,
Colorado State University
,
Fort Collins, CO
.
30.
Wildenschild
,
D.
,
Hopmans
,
J.
, and
Simunek
,
J.
,
2001
, “
Flow Rate Dependence of Soil Hydraulic Characteristics
,”
Soil Sci. Soc. Am. J.
,
65
(
1
), pp.
35
48
.
31.
Abidoye
,
L. K.
, and
Das
,
D. B.
,
2014
, “
Scale Dependent Dynamic Capillary Pressure Effect for Two-Phase Flow in Porous Media
,”
Adv. Water Resour.
,
74
, pp.
212
230
.
32.
Das
,
D.
, and
Mirzaei
,
M.
,
2013
, “
Experimental Measurement of Dynamic Effect in Capillary Pressure Relationship for Two-Phase Flow in Weakly Layered Porous Media
,”
AIChE J.
,
59
(
5
), pp.
1723
1734
.
33.
Tian
,
S.
,
Lei
,
G.
,
He
,
S.
, and
Yang
,
L.
,
2012
, “
Dynamic Effect of Capillary Pressure in Low Permeability Reservoirs
,”
Pet. Explor. Dev.
,
39
(
3
), pp.
378
384
.
34.
Zhu
,
W.
,
Song
,
H.
, and
He
,
D.
,
2008
, “
Low-Velocity non-Darcy Gas Seepage Model and Productivity Equations of Low-Permeability Water-Bearing Gas Reservoirs
,”
Nat. Gas Geosci.
,
19
(
5
), pp.
685
689
.
35.
Das
,
D.
, and
Mirzaei
,
M.
,
2012
, “
Dynamic Effects in Capillary Pressure Relationships for Two-Phase Flow in Porous Media: Experiments and Numerical Analyses
,”
AIChE J.
,
58
(
12
), pp.
3891
3903
.
36.
Boulon
,
M.
,
Selvadurai
,
A.
,
Benjelloun
,
H.
, and
Feuga
,
B.
,
1993
, “
Influence of Rock Joint Degradation on Hydraulic Conductivity
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
30
(
7
), pp.
1311
1317
.
37.
Yang
,
M.
,
2004
, “
The Study of Oil-Gas Reservoir Porosity Medium's Deformation Theory and Applications
,” Ph.D. dissertation, Southwest Petroleum University, Chengdu, China.
38.
Dykstra
,
H.
, and
Parsons
,
R.
,
1950
, “
The Prediction of Oil Recovery by Water Flood
,”
Second Recovery Oil United States
, Vol.
160
, pp.
160
174
.
39.
Yi
,
J.
,
2014
, “
Water Production Modeling and Water Control Strategy for Gas Wells in Tight Gas Reservoirs: Eastern Sulige Gas Reservoir
,” M.Sc. thesis, China University of Petroleum-Beijing, Beijing, China.
40.
Kou
,
J.
, and
Sun
,
S.
,
2010
, “
A New Treatment of Capillarity to Improve the Stability of IMPES Two-Phase Flow Formulation
,”
Comput. Fluids
,
39
(
10
), pp.
1923
1931
.
41.
Redondo
,
C.
,
Rubio
,
G.
, and
Valero
,
E.
,
2018
, “
On the Efficiency of the IMPES Method for Two Phase Flow Problems in Porous Media
,”
J. Pet. Sci. Eng.
,
164
, pp.
427
436
.
42.
Zhang
,
F.
, and
Yang
,
D.
,
2017
, “
Effects of non-Darcy Flow and Penetrating Ratio on Performance of Horizontal Wells With Multiple Fractures in a Tight Formation
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032903
.
43.
Aziz
,
K.
, and
Settari
,
A.
,
1979
,
Petroleum Reservoir Simulation
,
Elsevier Applied Science Publishers
,
New York
.
44.
Wu
,
Y.
,
Moridis
,
G.
,
Bai
,
B.
, and
Zhang
,
K.
, “
A Multi-Continuum Model for Gas Production in Tight Fractured Reservoirs
,”
SPE Hydraulic Fracturing Technology Conference
, Woodlands, TX, Jan. 19–21, SPE Paper No.
118944
.
45.
Lekia
,
S. D. L.
, and
Evans
,
R. D.
,
1990
, “
A Water-Gas Relative Permeability Relationship for Tight Gas Sand Reservoirs
,”
ASME J. Energy Resour. Technol.
,
112
(
4
), pp.
239
245
.
46.
Zhang
,
F.
, and
Yang
,
D.
,
2014
, “
Determination of Fracture Conductivity in Tight Formations With non-Darcy Flow Behaviour
,”
SPE J.
,
19
(
1
), pp.
34
44
.
47.
Yang
,
D.
,
Zhang
,
F.
,
Styles
,
J. A.
, and
Gao
,
J.
,
2015
, “
Performance Evaluation of a Horizontal Well With Multiple Fractures by Use of a Slab-Source Function
,”
SPE J.
,
20
(
3
), pp.
652
662
.
48.
You
,
L.
,
Kang
,
Y.
,
Chen
,
Y.
,
Cheng
,
Q.
, and
You
,
H.
,
2006
, “
Stress Sensitivity of Fractured Tight Gas Sands in Consideration of Fractures and Water Saturation
,”
J. China Univ. Pet. (Nat. Sci. Ed.)
,
30
(
2
), pp.
59
63
.
49.
Yang
,
D.
,
Zhang
,
Q.
,
Fan
,
L.
, and
Feng
,
Y.
,
1999
, “
Inflow Performance of Horizontal Wells in Naturally Fractured Reservoirs
,”
J. Univ. Pet. (Nat. Sci. Ed.)
,
23
(
6
), pp.
44
49
.
50.
Chen
,
S.
,
Li
,
H.
,
Zhang
,
Q.
, and
Yang
,
D.
,
2008
, “
A New Technique for Production Prediction in Stress-Sensitive Reservoirs
,”
J. Can. Pet. Technol.
,
47
(
3
), pp.
49
54
.
51.
Zhou
,
D.
,
2006
, “
Study on the Relationship Between Irreducible Water Saturation and Critical Water Saturation
,”
Pet. Geol. Recovery Efficiency
,
13
(
6
), pp.
81
83
.
52.
Samstag
,
F. J.
, and
Morgan
,
F. D.
, “
Effective Medium Approach to Critical Saturation
,”
SEG Annual Meeting
, Houston, TX, Nov. 10–14, SEG Paper No.
1991-0152
https://library.seg.org/doi/abs/10.1190/1.1888999.
53.
Bassiouni
,
Z.
,
1994
, “
Theory, Measurement, and Interpretation of Well Logs
,”
Society of Petroleum Engineers (SPE)
, Richardson, TX, pp. 1–24.
54.
Alamooti
,
A. M.
,
Ghazanfari
,
M. H.
, and
Masihi
,
M.
,
2018
, “
Investigating the Relative Permeability Behavior in Presence of Capillary Effects in Composite Core Systems
,”
J. Pet. Sci. Eng.
,
160
, pp.
341
350
.
55.
Chen
,
W.
,
2014
, “
Methods to Evaluate Formation Pressure in the Sulige Gas Field
,” M.Sc. thesis, Xi'an Shiyou University, Xi'an, China.
56.
Zhang
,
Z.
,
2015
, “
Well Management and Dynamic Analysis of Eastern Sulige Gas Field
,” M.Sc. thesis, Xi'an Shiyou University, Xi'an, China.
57.
Huang
,
W.
,
Guo
,
P.
,
Jiang
,
Y.
, and
Bi
,
J.
,
2005
, “
Experimental Study on Movable Water in Qiaobai Gas Reservoir
,”
Nat. Gas Explor. Dev.
,
28
(
2
), pp.
39
42
.
58.
Yang
,
Z.
,
Jiang
,
H.
,
Zhu
,
G.
,
Li
,
S.
, and
Shan
,
W.
,
2008
, “
Research on Reservoir Evaluation Index for Low-Permeability Water-Bearing Gas Reservoir
,”
Acta Petrolei Sin.
,
29
(
2
), pp.
252
255
.
59.
Zhang
,
Y.
,
Li
,
H.
, and
Yang
,
D.
,
2012
, “
Simultaneous Estimation of Relative Permeability and Capillary Pressure Using Ensemble-Based History Matching Techniques
,”
Transp. Porous Media
,
94
(
1
), pp.
259
276
.
60.
Zhang
,
Y.
,
Yang
,
D.
, and
Song
,
C.
,
2016
, “
A Damped Iterative EnKF Method to Estimate Relative Permeability and Capillary Pressure for Tight Formations From Displacement Experiments
,”
Fuel
,
167
(
5
), pp.
306
315
.
61.
Zhang
,
Y.
,
Fan
,
Z.
,
Yang
,
D.
,
Li
,
H.
, and
Patil
,
S.
,
2017
, “
Simultaneous Estimation of Relative Permeability and Capillary Pressure for PUNQ-S3 Model With a Damped Iterative-ensemble-Kalman-Filter Technique
,”
SPE J.
,
22
(
3
), pp.
971
984
.
62.
Zhang
,
Y.
, and
Yang
,
D.
,
2013
, “
Simultaneous Estimation of Relative Permeability and Capillary Pressure for Tight Formations Using Ensemble-Based History Matching Method
,”
Comput. Fluids
,
71
(
1
), pp.
446
460
.
63.
Elzeftawy
,
A.
, and
Mansell
,
R.
,
1975
, “
Hydraulic Conductivity Calculations for Unsaturated Steady-State and Transient-State Flow in Sands
,”
Soil Sci. Soc. Am. J.
,
39
(
4
), pp.
599
603
.
64.
Wanna-Etyem
,
C.
,
1982
, “
Static and Dynamic Water Content-Pressure Head Relations of Porous Media
,” Ph.D. dissertation, Colorado State University, Fort Collins, CO.
65.
Kalaydjian
,
F.
,
1987
, “
A Macroscopic Description of Multiphase Flow in Porous Media Involving Space-Time Evolution of Fluid-Fluid Interfaces
,”
Transp. Porous Media
,
2
(
6
), pp.
537
552
.
66.
Hollenbeck
,
K.
, and
Jensen
,
K.
,
1998
, “
Experimental Evidence of Randomness and Non-Uniqueness in Unsaturated Outflow Experiments Designed for Hydraulic Parameter Estimation
,”
Water Resour. Res.
,
34
(
4
), pp.
595
602
.
67.
Wang
,
X.
, and
Alvarado
,
V.
,
2017
, “
Effects of Low-Salinity Waterflooding on Capillary Pressure Hysteresis
,”
Fuel
,
207
(
1
), pp.
336
343
.
68.
Archer
,
R. A.
,
2008
, “
Impact of Stress Sensitive Permeability on Production Data Analysis
,”
SPE Unconventional Reservoirs Conference
, Keystone, CO, Feb. 10–12, SPE Paper No.
114166
.
You do not currently have access to this content.