The present work explored the constitution of the calorific values of biomass fuels and the mechanism by which basic chemical compositions affect the fuel calorific data. For the first time, an energy conversion model was developed for the functional groups stored in biomass fuels by combustion. Validation of the model was performed by testing with various types of substances. By analyzing the effect of mass increase of individual chemical species on the amount of heat released by a fuel, it was confirmed that for ligno-cellulosic fuels, the species containing C–H, C–C and C=C bonds positively affect the fuel calorific values, whereas the species containing O–H, C–N, C–O, and C=O bonds have negative role in the increase of the fuel calorific values. A ratio parameter was then developed to quantitatively evaluate the potential of individual chemical bonds to contribute to the calorific values of biomass fuels, which well explained the existing techniques for treating biomass as fuels. The outcomes of this work serve as a theoretical basis for improving the efficiency in energy utilization of biomass fuels.

References

References
1.
Demirbaş
,
A.
,
1997
, “
Calculation of Higher Heating Values of Biomass Fuels
,”
Fuel
,
76
(
5
), pp.
431
434
.
2.
Sheng
,
C.
, and
Azevedo
,
J. L. T.
,
2005
, “
Estimating the Higher Heating Value of Biomass Fuels From Basic Analysis Data
,”
Biomass Bioenergy
,
28
(
5
), pp.
499
507
.
3.
Koytsoumpa
,
E.-I.
,
Bergins
,
C.
,
Buddenberg
,
T.
,
Wu
,
S.
,
Sigurbjörnsson
,
Ó.
,
Tran
,
K. C.
, and
Kakaras
,
E.
,
2016
, “
The Challenge of Energy Storage in Europe: Focus on Power to Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042002
.
4.
Tao
,
J.-J.
,
Wang
,
H.-H.
,
Chen
,
S.
,
Hu
,
G.-Q.
,
Wang
,
Z.-S.
,
Zhou
,
Y.-F.
,
Li
,
X.-C.
, and
Wu
,
Z.-P.
,
2016
, “
A Study of the Heating Values of Surface Fuels in Guangdong Forest Areas
,”
Energy, Environmental and Sustainable Ecosystem Development (EESED 2015)
,
J.
Khatib
, ed.,
World Scientific Publishing
,
Singapore
, pp.
1.6.1
1.6.11
.
5.
Vargas-Moreno
,
J. M.
,
Callejón-Ferre
,
A. J.
,
Pérez-Alonso
,
J.
, and
Velázquez-Martí
,
B.
,
2012
, “
A Review of the Mathematical Models for Predicting the Heating Value of Biomass Materials
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3065
3083
.
6.
Alkan
,
C.
,
2006
, “
Enthalpy of Melting and Solidification of Sulfonated Paraffins as Phase Change Materials for Thermal Energy Storage
,”
Thermochim. Acta
,
451
(
1–2
), pp.
126
130
.
7.
Yang
,
H.
,
Yan
,
R.
,
Chen
,
H.
,
Lee
,
D. H.
, and
Zheng
,
C.
,
2007
, “
Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis
,”
Fuel
,
86
(
12–13
), pp.
1781
1788
.
8.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter
,
14
(
4
), pp.
783
802
.
9.
Luo
,
Y.-R.
,
2005
,
Handbook of Bond Dissociation Energies in Organic Compounds
,
Science Press
,
Beijing, China
(in Chinese).
10.
Hawtin
,
P.
,
Lewis
,
J. B.
,
Moul
,
N.
, and
Phillips
,
R. H.
,
1966
, “
The Heats of Combustion of Graphite, Diamond and Some Non-Graphitic Carbons
,”
Philos. Trans. R. Soc. Lond. A
,
261
(
1116
), pp.
67
95
.
11.
NIST
,
2017
, “
NIST Chemistry Webbook
,” National Institute of Standards and Technology, Gaithersburg, MD, accessed June 10, 2018, https://webbook.nist.gov/chemistry/name-ser/
12.
Gilani
,
N.
,
Hendijani
,
A. D.
, and
Seyedin
,
F.
,
2017
, “
Increasing the Heating Value of Ethanol Using Functionalized Carbon Nanotubes
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012001
.
13.
Stelte
,
W.
,
Holm
,
J. K.
,
Sanadi
,
A. R.
,
Barsberg
,
S.
,
Ahrenfeldt
,
J.
, and
Henriksen
,
U. B.
,
2011
, “
A Study of Bonding and Failure Mechanisms in Fuel Pellets From Different Biomass Resources
,”
Biomass Bioenergy
,
35
(
2
), pp.
910
918
.
14.
Wang
,
H.-H.
,
2007
, “
Kinetic Analysis of Dehydration of a Bituminous Coal Using the TGA Technique
,”
Energy Fuel
,
21
(
6
), pp.
3070
3075
.
15.
Raveendran
,
K.
, and
Ganesh
,
A.
,
1996
, “
Heating Value of Biomass and Biomass Pyrolysis Products
,”
Fuel
,
75
(
15
), pp.
1715
1720
.
16.
Bassilakis
,
R.
,
Carangelo
,
R. M.
, and
Wójtowicz
,
M. A.
,
2001
, “
TG-FTIR Analysis of Biomass Pyrolysis
,”
Fuel
,
80
(
12
), pp.
1765
1786
.
17.
Cheng
,
F.
, and
Brewer
,
C. E.
,
2017
, “
Producing Jet Fuels From Biomass Lignin: Potential Pathways to Alkyl-Benzenes and Cycloalkanes
,”
Renewable Sustainable Energy Rev.
,
72
, pp.
673
722
.
18.
Li
,
X.
,
Gunawan
,
R.
,
Lievens
,
C.
,
Wang
,
Y.
,
Mourant
,
D.
,
Wang
,
S.
,
Wu
,
H.
,
Garcia-Perez
,
M.
, and
Li
,
C.-Z.
,
2011
, “
Simultaneous Catalytic Esterification of Carboxylic Acids and Acetalisation of Aldehydes in a Fast Pyrolysis Bio-Oil From Mallee Biomass
,”
Fuel
,
90
(
7
), pp.
2530
2537
.
19.
Baddour
,
F. G.
,
Nash
,
C. P.
,
Schaidle
,
J. A.
, and
Ruddy
,
D. A.
,
2016
, “
Synthesis of α-MoC1−x Nanoparticles With a Surface-Modified SBA-15 Hard Template: Determination of Structure–Function Relationships in Acetic Acid Deoxygenation
,”
Angew. Chem. Int. Ed. Engl.
,
55
(
31
), pp.
9026
9029
.
20.
Güell
,
B. M.
,
Sandquist
,
J.
, and
Sørum
,
L.
,
2012
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
.
21.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
Influence of Selected Gasification Parameters on Syngas Composition From Biomass Gasification
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041803
.
22.
Gao
,
X.
,
Zhang
,
Y.
,
Li
,
B.
,
Xie
,
G.
, and
Zhao
,
W.
,
2018
, “
Experimental Investigation Into the Characteristics of Chars Obtained From Fast Pyrolysis of Different Biomass Fuels
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
044501
.
You do not currently have access to this content.