Biomass has been considered as a valuable alternative fuel recently. A fundamental property of biomass/air flame, laminar burning speed, is measured in this research. Experiments have been made in a cylindrical combustion vessel with two end windows. Central ignition has been used to start the combustion process. A high-speed CMOS camera capable of taking pictures of 40,000 frames per second has been used to study morphology of flame front. Flames are initially smooth, and as pressure and flame radius increase, cracks and cells appear on the flame surface. In this paper, experimental results have only been reported for smooth flames. A multishell thermodynamic model to measure laminar burning speed of biomass/air mixture with varying CO2 concentrations (0%–60%), based on the pressure rise data collected from a cylindrical chamber during combustion, has been developed in this paper. Burning speed has been only reported for flame radii larger than 4 cm in radius in order to have negligible stretch effect. Power law correlations, to predict burning speed of biomass/air mixtures, based on the measured burning speeds, have been developed for a range of temperatures of 300–661 K, pressures of 0.5–6.9 atmospheres, equivalence ratios of 0.8–1.2, and CO2 concentrations 0%–60%. Moreover, the measured laminar burning speeds have been compared with simulation results using a one-dimensional steady-state laminar premixed flame program with GRI-Mech 3.0 mechanism and other available data from literatures. Comparison with existing data has been excellent.

References

References
1.
Wilson
,
D. A.
, and
Lyons
,
K. M.
,
2009
, “
On Diluted-Fuel Combustion Issues in Burning Biogas Surrogates
,”
ASME J. Energy Resour. Technol.
,
131
(
4
), p.
041802
.
2.
Arthur
,
R.
,
Baidoo
,
M. F.
, and
Antwi
,
E.
,
2011
, “
Biogas as a Potential Renewable Energy Source: A Ghanaian Case Study
,”
Renewable Energy
,
36
(
5
), pp.
1510
1516
.
3.
Taylor
,
M.
,
Daniel
,
K.
,
Ilas
,
A.
, et al. .
2015
,
Renewable Power Generation Costs in 2014[J]
,
International Renewable Energy Agency
,
Masdar City, Abu Dhabi, United Arab Emirates
.
4.
Awogbemi
,
O.
, and
Adeyemo
,
S. B.
,
2015
, “
Development and Testing of Biogas-Petrol Blend as An Alternative Fuel for Spark Ignition Engine
,”
Int. J. Sci. Technol. Res.
,
4
(
9
), pp.
179
186
.http://www.ijstr.org/final-print/sep2015/Development-And-Testing-Of-Biogas-petrol-Blend-As-An-Alternative-Fuel-For-Spark-Ignition-Engine.pdf
5.
Wellinger
,
A.
,
Murphy
,
J. D.
, and
Baxter
,
D.
,
2013
,
The Biogas Handbook: Science, Production and Applications
, Woodhead Publishing, Cambridge, UK.
6.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1982
, “
Burning Velocities of Mixtures of Air With Methanol, Isooctane, and Indolene at High Pressure and Temperature
,”
Combust. Flame
,
48
, pp.
191
210
.
7.
Hernandez
,
J. J.
,
Lapuerta
,
M.
,
Serrano
,
C.
, et al. .,
2005
, “
Estimation of the Laminar Flame Speed of Producer Gas From Biomass Gasification
,”
Energy Fuels
,
19
(
5
), pp.
2172
2178
.
8.
Wang
,
Z.
,
Alswat
,
M.
,
Yu
,
G.
, and
Allehaibi, M. O.
, and
Metghalchi, H.
,
2017
, “
Flame Structure and Laminar Burning Speed of Gas to Liquid Fuel Air Mixtures at Moderate Pressures and High Temperatures
,”
Fuel
,
209
, pp.
529
537
.
9.
Chan
,
Y. L.
,
Zhu
,
M. M.
,
Zhang
,
Z. Z.
,
Liu
,
P. F.
, and
Zhang
,
D. K.
,
2015
, “
The Effect of CO2 Dilution on the Laminar Burning Velocity of Premixed Methane/Air Flames
,”
Energy Procedia
,
75
, pp.
3048
3053
.
10.
Zahedi
,
P.
, and
Yousefi
,
K.
,
2014
, “
Effects of Pressure and Carbon Dioxide, Hydrogen and Nitrogen Concentration on Laminar Burning Velocities and NO Formation of Methane-Air Mixtures
,”
J. Mech. Sci. Technol.
,
28
(
1
), pp.
377
386
.
11.
Cardona
,
C. A.
, and
Amell
,
A. A.
,
2013
, “
Laminar Burning Velocity and Interchangeability Analysis of Biogas/C3H8/H2 with Normal and Oxygen-Enriched Air
,”
Int. J. Hydrogen Energy
,
38
(
19
), pp.
7994
8001
.
12.
Anggono
,
W.
,
Wardana
,
I. N. G.
,
Lawes
,
M.
, et al. .,
2016
, “
The Influence of CO2 in Biogas Flammability Limit and Laminar Burning Velocity in Spark Ignited Premix Combustion at Various Pressures
,”
AIP Conf. Proc.
,
1717
(
1
), p.
030001
.
13.
Nonaka
,
H. O. B.
, and
Pereira
,
F. M.
,
2016
, “
Experimental and Numerical Study of CO2 Content Effects on the Laminar Burning Velocity of Biogas
,”
Fuel
,
182
, pp.
382
390
.
14.
Halter
,
F.
,
Foucher
,
F.
,
Landry
,
L.
, and
Mounaïm-Rousselle, C.
,
2009
, “
Effect of Dilution by Nitrogen and/or Carbon Dioxide on Methane and Iso-Octane Air Flames
,”
Combust. Sci. Technol.
,
181
(
6
), pp.
813
827
.
15.
Cohe
,
C.
,
Chauveau
,
C.
,
Gökalp
,
I.
, et al. .,
2009
, “
CO2 Addition and Pressure Effects on Laminar and Turbulent Lean Premixed CH4 Air Flames
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1803
1810
.
16.
Stone
,
R.
,
Clarke
,
A.
, and
Beckwith
,
P.
,
1998
, “
Correlations for the Laminar-Burning Velocity of Methane/Diluent/Air Mixtures Obtained in Free-Fall Experiments
,”
Combust. Flame
,
114
(
3–4
), pp.
546
555
.
17.
Walsh
,
J. L.
,
Ross
,
C. C.
,
Smith
,
M. S.
, et al. .,
1988
,
Biogas Utilization Handbook
,
Georgia Tech Research Institute
,
Atlanta, GA
.
18.
Liu
,
T.
,
Zhang
,
G.
,
Li
,
Y.
, and
Harper, S. R.
,
2018
, “
Performance Analysis of Partially Recuperative Gas Turbine Combined Cycle Under Off-Design Conditions
,”
Energy Convers. Manage.
,
162
, pp.
55
65
.
19.
Asgari
,
O.
,
Hannani
,
S. K.
, and
Ebrahimi
,
R.
,
2012
, “
Improvement and Experimental Validation of a Multi-Zone Model for Combustion and NO Emissions in CNG Fueled Spark Ignition Engine
,”
J. Mech. Sci. Technol.
,
26
(
4
), pp.
1205
1212
.
20.
Dupont
,
L.
, and
Accorsi
,
A.
,
2006
, “
Explosion Characteristics of Synthesised Biogas at Various Temperatures
,”
J. Hazardous Mater.
,
136
(
3
), pp.
520
525
.
21.
Liu
,
F.
,
Guo
,
H.
, and
Smallwood
,
G. J.
,
2003
, “
The Chemical Effect of CO2 Replacement of N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames
,”
Combust. Flame
,
133
(
4
), pp.
495
497
.
22.
Hinton
,
N.
, and
Stone
,
R.
,
2014
, “
Laminar Burning Velocity Measurements of Methane and Carbon Dioxide Mixtures (Biogas) Over Wide Ranging Temperatures and Pressures
,”
Fuel
,
116
, pp.
743
750
.
23.
Far
,
K. E.
,
Parsinejad
,
F.
, and
Metghalchi
,
H.
,
2010
, “
Flame Structure and Laminar Burning Speeds of JP-8/Air Premixed Mixtures at High Temperatures and Pressures
,”
Fuel
,
89
(
5
), pp.
1041
1049
.
24.
Burke
,
M. P.
,
Chaos
,
M.
,
Dryer
,
F. L.
, and
Ju, Y.
,
2010
, “
Negative Pressure Dependence of Mass Burning Rates of H2/CO/O2/Diluent Flames at Low Flame Temperatures
,”
Combust. Flame
,
157
(
4
), pp.
618
631
.
25.
Burke
,
M. P.
,
Chen
,
Z.
,
Ju
,
Y.
, and
Dryer, F. L.
,
2009
, “
Effect of Cylindrical Confinement on the Determination of Laminar Flame Speeds Using Outwardly Propagating Flames
,”
Combust. Flame
,
156
(
4
), pp.
771
779
.
26.
Askari
,
O.
,
Moghaddas
,
A.
,
Alholm
,
A.
,
Alhazmi, B.
, and
Metghalchi, H.
,
2016
, “
Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/Air Mixtures at High Temperatures and Pressures Using a Novel Multi-Shell Model
,”
Combust. Flame
,
168
, pp.
20
31
.
27.
Askari
,
O.
,
Metghalchi
,
H.
,
Hannani
,
S. K.
,
Moghaddas, A.
,
Ebrahimi, R.
, and
Hemmati, H.
,
2013
, “
Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
.
28.
Askari
,
O.
,
Vien
,
K.
,
Wang
,
Z.
,
Sirio, M.
, and
Metghalchi, H.
,
2016
, “
Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/Air Flames at High Pressures and Temperatures
,”
Appl. Energy
,
179
, pp.
451
462
.
29.
Askari
,
O.
,
Wang
,
Z.
,
Vien
,
K.
,
Sirio, M.
, and
Metghalchi, H.
,
2017
, “
On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame[J]
,”
Fuel
,
190
, pp.
90
103
.
30.
Kadowaki
,
S.
,
Suzuki
,
H.
, and
Kobayashi
,
H.
,
2005
, “
The Unstable Behavior of Cellular Premixed Flames Induced by Intrinsic Instability
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
169
176
.
31.
Law
,
C. K.
, and
Kwon
,
O. C.
,
2004
, “
Effects of Hydrocarbon Substitution on Atmospheric Hydrogen–Air Flame Propagation
,”
Int. J. Hydrogen Energy
,
29
(
8
), pp.
867
879
.
32.
Sivashinsky
,
G. I.
,
1977
, “
Diffusional-Thermal Theory of Cellular Flames
,”
Combust. Sci. Technol.
,
15
(
3–4
), pp.
137
145
.
33.
Sivashinsky
,
G. I.
,
1983
, “
Instabilities, Pattern Formation, and Turbulence in Flames
,”
Annu. Rev. Fluid Mech.
,
15
(
1
), pp.
179
199
.
34.
Bechtold
,
J. K.
, and
Matalon
,
M.
,
1987
, “
Hydrodynamic and Diffusion Effects on the Stability of Spherically Expanding Flames
,”
Combust. Flame
,
67
(
1
), pp.
77
90
.
35.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1980
, “
Laminar Burning Velocity of Propane-Air Mixtures at High Temperature and Pressure
,”
Combust. Flame
,
38
, pp.
143
154
.
36.
Yu
,
G.
,
Askari
,
O.
,
Hadi
,
F.
,
Wang, Z.
,
Metghalchi, H.
,
Kannaiyan, K.
, and
Sadr, R.
,
2017
, “
Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022202
.
37.
Yu
,
G.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2018
, “
Theoretical Prediction of the Effect of Blending JP-8 With Syngas on the Ignition Delay Time and Laminar Burning Speed
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012204
.
38.
Parsinejad
,
F.
,
Arcari
,
C.
, and
Metghalchi
,
H.
,
2006
, “
Flame Structure and Burning Speed of JP-10 Air Mixtures
,”
Combust. Sci. Technol.
,
178
(
5
), pp.
975
1000
.
39.
Eisazadeh-Far
,
K.
,
Parsinejad
,
F.
,
Metghalchi
,
H.
, and
Keck, J. C.
,
2010
, “
On Flame Kernel Formation and Propagation in Premixed Gases
,”
Combust. Flame
,
157
(
12
), pp.
2211
2221
.
40.
Rahim
,
F.
,
Elia
,
M.
,
Ulinski
,
M.
, and
Metghalchi, M.
,
2002
, “
Burning Velocity Measurements of Methane-Oxygen-Argon Mixtures and an Application to Extend Methane-Air Burning Velocity Measurements
,”
Int. J. Engine Res.
,
3
(
2
), pp.
81
92
.
41.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Metghalchi
,
H.
, and
Keck. J. C.
,
2011
, “
The Effect of Diluent on Flame Structure and Laminar Burning Speeds of JP-8/Oxidizer/Diluent Premixed Flames
,”
Fuel
,
90
(
4
), pp.
1476
1486
.
42.
Rahim
,
F.
,
Far
,
K. E.
,
Parsinejad
,
F.
, and
Andrews, R. J.
,
2008
, “
A Thermodynamic Model to Calculate Burning Speed of Methane-Air-Diluent Mixtures
,”
Int. J. Thermodyn.
,
11
(
4
), pp.
151
160
.http://dergipark.gov.tr/download/article-file/65737
43.
Parsinejad
,
F.
,
Keck
,
J. C.
, and
Metghalchi
,
H.
,
2007
, “
On the Location of Flame Edge in Shadowgraph Pictures of Spherical Flames: A Theoretical and Experimental Study
,”
Exp. Fluids
,
43
(
6
), pp.
887
894
.
44.
Moghaddas
,
A.
,
Bennett
,
C.
,
Eisazadeh-Far
,
K.
, and
Metghalchi, H.
,
2012
, “
Measurement of Laminar Burning Speeds and Determination of Onset of Auto-Ignition of Jet-A/Air and Jet Propellant-8/Air Mixtures in a Constant Volume Spherical Chamber
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022205
.
45.
Rokni
,
E.
,
Moghaddas
,
A.
,
Askari
,
O.
, and
Metghalchi, H.
,
2015
, “
Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012204
.
46.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Rahim
,
F.
, and
Metghalchi, H.
,
2010
, “
Burning Speed and Entropy Production Calculation of a Transient Expanding Spherical Laminar Flame Using a Thermodynamic Model[J]
,”
Entropy
,
12
(
12
), pp.
2485
2496
.
47.
Parsinejad
,
F.
,
Matlo
,
M.
, and
Metghalchi
,
M.
,
2004
, “
A Mathematical Model for Schlieren and Shadowgraph Images of Transient Expanding Spherical Thin Flames
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
241
247
.
48.
Wang
,
Z.
,
Bai
,
Z.
,
Yelishala
,
S. C.
,
Yu, G.
, and
Metghalchi, H.
,
2018
, “
Effects of Diluent on Laminar Burning Speed and Flame Structure of Gas to Liquid Fuel Air Mixtures at High Temperatures and Moderate Pressures
,”
Fuel
,
231
, pp.
204
214
.
49.
Chen
,
Z.
,
Qin
,
X.
,
Xu
,
B.
,
Ju, Y.
, and
Liu, F.
,
2007
, “
Studies of Radiation Absorption on Flame Speed and Flammability Limit of CO2 Diluted Methane Flames at Elevated Pressures
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2693
2700
.
50.
Rivière
,
P.
, and
Soufiani
,
A.
,
2012
, “
Updated Band Model Parameters for H2O, CO2, CH4 and CO Radiation at High Temperature
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3349
3358
.
51.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2009
,
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,
Caltech
,
Pasadena, CA
.
52.
Wu
,
F.
,
Liang
,
W.
,
Chen
,
Z.
,
Ju, Y.
, and
Law, C. K.
,
2015
, “
Uncertainty in Stretch Extrapolation of Laminar Flame Speed From Expanding Spherical Flames
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
663
670
.
53.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Al-Mulki
,
J.
, and
Metghalchi, H.
,
2011
, “
Laminar Burning Speeds of Ethanol/Air/Diluent Mixtures
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1021
1027
.
54.
Moghaddas
,
A.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Laminar Burning Speed Measurement of Premixed n-Decane/Air Mixtures Using Spherically Expanding Flames at High Temperatures and Pressures
,”
Combust. Flame
,
159
(
4
), pp.
1437
1443
.
55.
Chen
,
Z.
,
Burke
,
M. P.
, and
Ju
,
Y.
,
2009
, “
Effects of Compression and Stretch on the Determination of Laminar Flame Speeds Using Propagating Spherical Flames
,”
Combust. Theory Modell.
,
13
(
2
), pp.
343
364
.
56.
Liu
,
C.
,
Yan
,
B.
,
Chen
,
G.
, and
ad Bai, X. S.
,
2010
, “
Structures and Burning Velocity of Biomass Derived Gas Flames
,”
Int. J. Hydrogen Energy
,
35
(
2
), pp.
542
555
.
57.
Qiao
,
L.
,
Gan
,
Y.
,
Nishiie
,
T.
,
Dahm, W. J. A.
, and
Oran, E. S.
,
2010
, “
Extinction of Premixed Methane/Air Flames in Microgravity by Diluents: Effects of Radiation and Lewis Number
,”
Combust. Flame
,
157
(
8
), pp.
1446
1455
.
58.
Xie
,
Y.
,
Wang
,
J.
,
Zhang
,
M.
,
Gong, J.
,
Jin, W.
, and
Huang, Z.
,
2013
, “
Experimental and Numerical Study on Laminar Flame Characteristics of Methane Oxy-Fuel Mixtures Highly Diluted With CO2
,”
Energy Fuels
,
27
(
10
), pp.
6231
6237
.
59.
Yossefi
,
D.
,
Belmont
,
M. R.
,
Maskell
,
S. J.
, and
Ben-Dor, G.
,
1998
, “
Stimulation and Implementation of Laminar Flow Reactors for the Study of Combustion Systems of Ethane, Methane and Deborane
,”
Fuel
,
77
(
3
), pp.
173
181
.
60.
Natarajan
,
J.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2007
, “
Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure
,”
Combust. Flame
,
151
(
1–2
), pp.
104
119
.
61.
Mahishi
,
M. R.
, and
Goswami
,
D. Y.
,
2007
, “
Thermodynamic Optimization of Biomass Gasifier for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
32
(
16
), pp.
3831
3840
.
62.
Selle
,
L.
,
Poinsot
,
T.
, and
Ferret
,
B.
,
2011
, “
Experimental and Numerical Study of the Accuracy of Flame-Speed Measurements for Methane/Air Combustion in a Slot Burner
,”
Combust. Flame
,
158
(
1
), pp.
146
154
.
63.
Gu
,
X. J.
,
Haq
,
M. Z.
,
Lawes
,
M.
, and
Woolley, R.
,
2000
, “
Laminar Burning Velocity and Markstein Lengths of Methane–Air Mixtures
,”
Combust. Flame
,
121
(
1–2
), pp.
41
58
.
64.
Coppens
,
F. H. V.
,
De Ruyck
,
J.
, and
Konnov
,
A. A.
,
2007
, “
The Effects of Composition on Burning Velocity and Nitric Oxide Formation in Laminar Premixed Flames of CH4+ H2+ O2+ N2
,”
Combust. Flame
,
149
(
4
), pp.
409
417
.
65.
Kishore
,
V. R.
,
Duhan
,
N.
,
Ravi
,
M. R.
, and
Ray, A.
,
2008
, “
Measurement of Adiabatic Burning Velocity in Natural Gas-like Mixtures
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
10
16
.
66.
Elia
,
M.
,
Ulinski
,
M.
, and
Metghalchi
,
M.
,
2001
, “
Laminar Burning Velocity of Methane–Air–Diluent Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
190
196
.
You do not currently have access to this content.