Laminar burning speed and ignition delay time behavior of iso-octane at the presence of two different biofuels, ethanol and 2,5 dimethyl furan (DMF), was studied in this work. Biofuels are considered as a better alternative source of fossil fuels. There is a potentiality that combustion characteristics of iso-octane can be improved using biofuels as an oxygenated additive. In this study, three different blending ratios of 5%, 25%, and 50% of ethanol/iso-octane and DMF/iso-octane were investigated. For laminar burning speed calculation, equivalence ratio of 0.6–1.4 was considered. Ignition delay time was measured under temperature ranges from 650 K to 1100 K. Two different mechanisms were considered in numerical calculation. These mechanisms were validated by comparing the results of pure fuels with wide range of experimental and numerical data. The characteristic change of iso-octane with the presence of additives was observed by comparing the results with pure fuel. Significant change was observed on behavior of iso-octane at 50% blending ratio. A comparison was also done on the effect of two different additives. It has found that addition of DMF brings significant changes on iso-octane characteristics comparing to ethanol.

References

1.
Mehl
,
M.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
, and
Curran
,
H. J.
,
2011
, “
Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
193
200
.
2.
Somers
,
K. P.
,
Simmie
,
J. M.
,
Gillespie
,
F.
,
Conroy
,
C.
,
Black
,
G.
,
Metcalfe
,
W. K.
,
Battin-Leclerc
,
F.
,
Dirrenberger
,
P.
,
Herbinet
,
O.
,
Glaude
,
P. A.
,
Dagaut
,
P.
,
Togbé
,
C.
,
Yasunaga
,
K.
,
Fernandes
,
R. X.
,
Lee
,
C.
,
Tripathi
,
R.
, and
Curran
,
H. J.
,
2013
, “
A Comprehensive Experimental and Detailed Chemical Kinetic Modelling Study of 2,5-Dimethylfuran Pyrolysis and Oxidation
,”
Combust. Flame
,
160
(
11
), pp.
2291
2318
.
3.
Yu
,
G.
,
Askari
,
O.
,
Hadi
,
F.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2017
, “
Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022202
.
4.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2017
, “
Cell Formation Effects on the Burning Speeds and Flame Front Area of Synthetic Gas at High Pressures and Temperatures
,”
Appl. Energy
,
189
, pp.
568
577
.
5.
Askari
,
O.
,
Wang
,
Z.
,
Vien
,
K.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2017
, “
On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame
,”
Fuel
,
190
, pp.
90
103
.
6.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2017
, “
Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012204
.
7.
Askari
,
O.
,
Vien
,
K.
,
Wang
,
Z.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/Air Flames at High Pressures and Temperatures
,”
Appl. Energy
,
179
, pp.
451
462
.
8.
Askari
,
O.
,
Moghaddas
,
A.
,
Alholm
,
A.
,
Vien
,
K.
,
Alhazmi
,
B.
, and
Metghalchi
,
H.
,
2016
, “
Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/Air Mixtures at High Temperatures and Pressures Using a Novel Multi-Shell Model
,”
Combust. Flame
,
168
, pp.
20
31
.
9.
Rokni
,
E.
,
Moghaddas
,
A.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2014
, “
Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene  (C2H2)/Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.  
012204
.
10.
Katre
,
V.
, and
Bhele
,
S. K.
,
2013
, “
A Review of Laminar Burning Velocity of Gases and Liquid Fuels
,”
Int. J. Comput. Eng. Res.
,
3
(
7
), pp.
33
38
.http://www.ijceronline.com/papers/Vol3_issue7/Part-2/E0372033038.pdf
11.
Eldeeb
,
M. A.
, and
Akih-Kumgeh
,
B.
,
2015
, “
Investigation of 2,5-Dimethyl Furan and Iso-Octane Ignition
,”
Combust. Flame
,
162
(
6
), pp.
2454
2465
.
12.
Vancoillie
,
J.
,
Demuynck
,
J.
,
Galle
,
J.
,
Verhelst
,
S.
, and
Van Oijen
,
J. A.
,
2012
, “
A Laminar Burning Velocity and Flame Thickness Correlation for Ethanol-Air Mixtures Valid at Spark-Ignition Engine Conditions
,”
Fuel
,
102
, pp.
460
469
.
13.
Rau
,
F.
,
Hartl
,
S.
,
Voss
,
S.
,
Still
,
M.
,
Hasse
,
C.
, and
Trimis
,
D.
,
2015
, “
Laminar Burning Velocity Measurements Using the Heat Flux Method and Numerical Predictions of Iso-Octane/Ethanol Blends for Different Preheat Temperatures
,”
Fuel
,
140
, pp.
10
16
.
14.
Ma
,
X.
,
Jiang
,
C.
,
Xu
,
H.
,
Ding
,
H.
, and
Shuai
,
S.
,
2014
, “
Laminar Burning Characteristics of 2-Methylfuran and Isooctane Blend Fuels
,”
Fuel
,
116
, pp.
281
291
.
15.
Van Lipzig
,
J. P. J.
,
Nilsson
,
E. J. K.
,
De Goey
,
L. P. H.
, and
Konnov
,
A. A.
,
2011
, “
Laminar Burning Velocities of n-Heptane, Iso-Octane, Ethanol and Their Binary and Tertiary Mixtures
,”
Fuel
,
90
(
8
), pp.
2773
2781
.
16.
Wu
,
X.
,
Li
,
Q.
,
Fu
,
J.
,
Tang
,
C.
,
Huang
,
Z.
,
Daniel
,
R.
,
Tian
,
G.
, and
Xu
,
H.
,
2012
, “
Laminar Burning Characteristics of 2,5-Dimethylfuran and Iso-Octane Blend at Elevated Temperatures and Pressures
,”
Fuel
,
95
, pp.
234
240
.
17.
Marinov
,
N. M.
,
1999
, “
A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation
,”
J. Chem. Kinet.
,
31
(
3
), pp.
183
220
.
18.
Yu
,
G.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2018
, “
Theoretical Prediction of the Effect of Blending JP-8 With Syngas on the Ignition Delay Time and Laminar Burning Speed
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012204
.
19.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2004
, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
,
36
(
11
), pp.
603
622
.
20.
Fieweger
,
K.
,
Blumenthal
,
R.
, and
Adomeit
,
G.
,
1997
, “
Self-Ignition of SI Engine Model Fuels: A Shock Tube Investigation at High Pressure
,”
Combust. Flame
,
109
(
4
), pp.
599
619
.
21.
Gauthier
,
B. M.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2004
, “
Shock Tube Determination of Ignition Delay Times in Full-Blend and Surrogate Fuel Mixtures
,”
Combust. Flame
,
139
(
4
), pp.
300
311
.
22.
Kumar
,
K.
,
Freeh
,
J. E.
,
Sung
,
C. J.
, and
Huang
,
Y.
,
2007
, “
Laminar Flame Speeds of Preheated iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures
,”
J. Propul. Power
,
23
(
2
), pp.
428
436
.
23.
Dirrenberger
,
P.
,
Glaude
,
P. A.
,
Bounaceur
,
R.
,
Le Gall
,
H.
,
Da Cruz
,
A. P.
,
Konnov
,
A. A.
, and
Battin-Leclerc
,
F.
,
2014
, “
Laminar Burning Velocity of Gasolines With Addition of Ethanol
,”
Fuel
,
115
, pp.
162
169
.
24.
Andrae
,
J. C. G.
,
Björnbom
,
P.
,
Cracknell
,
R. F.
, and
Kalghatgi
,
G. T.
,
2007
, “
Autoignition of Toluene Reference Fuels at High Pressures Modeled With Detailed Chemical Kinetics
,”
Combust. Flame
,
149
(
1–2
), pp.
2
24
.
25.
Kukkadapu
,
G.
,
Kumar
,
K.
,
Sung
,
C. J.
,
Mehl
,
M.
, and
Pitz
,
W. J.
,
2013
, “
Autoignition of Gasoline and Its Surrogates in a Rapid Compression Machine
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
345
352
.
26.
Kukkadapu
,
G.
,
Kumar
,
K.
,
Sung
,
C. J.
,
Mehl
,
M.
, and
Pitz
,
W. J.
,
2012
, “
Experimental and Surrogate Modeling Study of Gasoline Ignition in a Rapid Compression Machine
,”
Combust. Flame
,
159
(
10
), pp.
3066
3078
.
27.
Bradley
,
D.
,
Hicks
,
R. A.
,
Lawes
,
M.
,
Sheppard
,
C. G. W.
, and
Woolley
,
R.
,
1998
, “
The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane-Air and Iso-Octane-n-Heptane-Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb
,”
Combust. Flame
,
115
(
1–2
), pp.
126
144
.
28.
Huang
,
Y.
,
Sung
,
C. J.
, and
Eng
,
J. A.
,
2004
, “
Laminar Flame Speeds of Primary Reference Fuels and Reformer Gas Mixtures
,”
Combust. Flame
,
139
(
3
), pp.
239
251
.
29.
Seiser
,
R.
,
Pitsch
,
H.
,
Seshadri
,
K.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
,
2000
, “
Extinction and Autoignition of n-Heptane in Counterflow Configuration
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
2029
2037
.
30.
Jerzembeck
,
S.
,
Peters
,
N.
,
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
,
2009
, “
Laminar Burning Velocities at High Pressure for Primary Reference Fuels and Gasoline: Experimental and Numerical Investigation
,”
Combust. Flame
,
156
(
2
), pp.
292
301
.
31.
Cai
,
L.
, and
Pitsch
,
H.
,
2015
, “
Optimized Chemical Mechanism for Combustion of Gasoline Surrogate Fuels
,”
Combust. Flame
,
162
(
5
), pp.
1623
1637
.
32.
Dunphy
,
M. P.
, and
Simmie
,
J. M.
,
1991
, “
High Temperature Oxidation of Ethanol—Part 1: Ignition Delays in Shock Waves
,”
Chem. Soc. Faraday Trans.
,
87
(
11
), pp.
1691
1695
.
33.
Dunphy
,
M. P.
, and
Simmie
,
J. M.
,
1991
, “
High Temperature Oxidation of Ethanol—Part 2: Kinetic Modelling
,”
Chem. Soc. Faraday Trans.
,
87
(
11
), pp.
2549
2559
.
34.
Vancoillie
,
J.
,
Christensen
,
M.
,
Nilsson
,
E. J. K.
,
Verhelst
,
S.
, and
Konnov
,
A. A.
,
2012
, “
Temperature Dependence of the Laminar Burning Velocity of Methanol Flames
,”
Energy Fuels
,
26
(
3
), pp.
1557
1564
.
35.
Liao
,
S. Y.
,
Jiang
,
D. M.
,
Huang
,
Z. H.
,
Zeng
,
K.
, and
Cheng
,
Q.
,
2007
, “
Determination of the Laminar Burning Velocities for Mixtures of Ethanol and Air at Elevated Temperatures
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
374
380
.
36.
Bradley
,
D.
,
Lawes
,
M.
, and
Mansour
,
M. S.
,
2009
, “
Explosion Bomb Measurements of Ethanol-Air Laminar Gaseous Flame Characteristics at Pressures Up to 1.4 MPa
,”
Combust. Flame
,
156
(
7
), pp.
1462
1470
.
37.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Al-Mulki
,
J.
, and
Metghalchi
,
H.
,
2011
, “
Laminar Burning Speeds of Ethanol/Air/Diluent Mixtures
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1021
1027
.
38.
Egolfopoulos
,
F. N.
,
Du
,
D. X.
, and
Law
,
C. K.
,
1992
, “
A Study on Ethanol Oxidation Kinetics in Laminar Premixed Flames, Flow Reactors, and Shock Tubes
,”
Symp. Combust.
,
24
(
1
), pp.
833
841
.
39.
Wang
,
C.
,
Xu
,
H.
,
Daniel
,
R.
,
Ghafourian
,
A.
,
Herreros
,
J. M.
,
Shuai
,
S.
, and
Ma
,
X.
,
2013
, “
Combustion Characteristics and Emissions of 2-Methylfuran Compared to 2,5-Dimethylfuran, Gasoline and Ethanol in a DISI Engine
,”
Fuel
, 103, pp.
200
211
.
40.
Yüksel
,
F.
, and
Yüksel
,
B.
,
2004
, “
The Use of Ethanol-Gasoline Blend as a Fuel in an SI Engine
,”
Renew. Energy
,
29
(
7
), pp.
1181
1191
.
41.
Abdel-Rahman
,
A. A.
, and
Osman
,
M. M.
,
1997
, “
Experimental Investigation on Varying the Compression Ratio of SI Engine Working Under Different Ethanol—Gasoline Fuel Blends
,”
Int. J. Energy Res.
,
21
(
1
), pp.
31
40
.
42.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1982
, “
Burning Velocities of Mixtures of Air With Methanol, Isooctane, and Indolene at High Pressure and Temperature
,”
Combust. Flame
,
48
, pp.
191
210
.
43.
Varea
,
E.
,
Modica
,
V.
,
Renou
,
B.
, and
Boukhalfa
,
A. M.
,
2013
, “
Pressure Effects on Laminar Burning Velocities and Markstein Lengths for Isooctane-Ethanol-Air Mixtures
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
735
744
.
44.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2008
, “
A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations With Primary Reference Fuels
,”
Combust. Flame
,
155
(
4
), pp.
713
738
.
45.
Masum
,
B. M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Rizwanul Fattah
,
I. M. M.
,
Palash
,
S.
, and
Abedin
,
M. J.
,
2013
, “
Effect of Ethanol-Gasoline Blend on NOx Emission in SI Engine
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
209
222
.
46.
Gulder
,
O.
,
1984
, “
A Burning Velocity of Ethanol-Isooctane Blends
,”
Combust Flame
,
56
(
3
), pp.
261
268
.
47.
Palmer
,
F. H.
,
1986
, “
Vehicle Performance of Gasoline Containing Oxygenates
,”
International Conference on Petroleum Based Fuels and Automotive Applications
, London, UK, pp.
33
35
.
48.
Hsieh
,
W. D.
,
Chen
,
R. H.
,
Wu
,
T. L.
, and
Lin
,
T. H.
,
2002
, “
Engine Performance and Pollutant Emission of an SI Engine Using Ethanol-Gasoline Blended Fuels
,”
Atmos. Environ.
,
36
(
3
), pp.
403
410
.
49.
Song
,
C. L.
,
Zhou
,
Y. C.
,
Huang
,
R. J.
,
Wang
,
Y. Q.
,
Huang
,
Q. F.
, and
LüG
,
E.
,
2007
, “
Influence of Ethanol-Diesel Blended Fuels on Diesel Exhaust Emissions and Mutagenic and Genotoxic Activities of Particulate Extracts
,”
J. Hazard. Mater.
,
149
(
2
), pp.
355
363
.
50.
Najafi
,
G.
,
Ghobadian
,
B.
,
Tavakoli
,
T.
,
Buttsworth
,
D. R.
,
Yusaf
,
T. F.
, and
Faizollahnejad
,
M.
,
2009
, “
Performance and Exhaust Emissions of a Gasoline Engine With Ethanol Blended Gasoline Fuels Using Artificial Neural Network
,”
Appl. Energy
,
86
(
5
), pp.
630
639
.
51.
Galbiati
,
M. A.
,
Cavigiolo
,
A.
,
Effuggi
,
A.
, and
Gelosa
,
D. R.
,
2004
, “
Mild Combustion for Fuel-Nox Reduction
,”
Combust. Sci. Technol.
,
176
(
7
), pp.
1035
1054
.
52.
Cancino
,
L. R.
,
Fikri
,
M.
,
Oliveira
,
A. A. M.
, and
Schulz
,
C.
,
2011
, “
Ignition Delay Times of Ethanol-Containing Multi-Component Gasoline Surrogates: Shock-Tube Experiments and Detailed Modeling
,”
Fuel
,
90
(
3
), pp.
1238
1244
.
53.
Jing Zhong
,
B. D. Z.
,
2012
, “
Chemical Kinetic Mechanism of a Three-Component Fuel Composed of Iso-Octane/n-Heptane/Ethanol
,”
Combust. Sci. Technol.
,
185
(
4
), pp.
627
644
.
54.
Lifshitz
,
A.
,
Tamburu
,
C.
, and
Shashua
,
R.
,
1997
, “
Decomposition of 2-Methylfuran. Experimental and Modeling Study
,”
J. Phys. Chem. A
,
101
(
6
), pp.
1018
1029
.
55.
Lifshitz
,
A.
,
Tamburu
,
C.
, and
Shashua
,
R.
,
1998
, “
Thermal Decomposition of 2,5-Dimethylfuran: Experimental Results and Computer Modeling
,”
J. Phys. Chem
,
102
(
52
), pp.
10655
10670
.
56.
Tran
,
L. S.
,
Togbé
,
C.
,
Liu
,
D.
,
Felsmann
,
D.
,
Oßwald
,
P.
,
Glaude
,
P. A.
,
Fournet
,
R.
,
Sirjean
,
B.
,
Battin-Leclerc
,
F.
, and
Kohse-Höinghaus
,
K.
,
2014
, “
Combustion Chemistry and Flame Structure of Furan Group Biofuels Using Molecular-Beam Mass Spectrometry and Gas Chromatography—Part II: 2-Methylfuran
,”
Combust. Flame
,
161
(
3
), pp.
766
779
.
57.
Liu
,
D.
,
Togbé
,
C.
,
Tran
,
L.-S
,
Felsmann
,
D.
,
Oßwalda
,
P.
,
Naua
, P.
,
Koppmanna
,
J.
,
Lackner
,
A.
,
Glaude
,
P.-A.
,
Sirjean
,
B.
,
Fournet
,
R.
,
Battin-Leclerc
,
F.
, and
Kohse-Höinghaus
,
K.
,
2014
, “
Combustion Chemistry and Flame Structure of Furan Group Biofuels Using Molecular-Beam Mass Spectrometry and Gas Chromatography—Part I: Furan
,”
Combust. Flame
,
161
(
3
), pp.
748
765
.
58.
Somers
,
K. P.
,
Simmie
,
J. M.
,
Gillespie
,
F.
,
Burke
,
U.
,
Connolly
,
J.
,
Metcalfe
,
W. K.
,
Battin-Leclerc
,
F.
,
Dirrenberger
,
P.
,
Herbinet
,
O.
,
Glaude
,
P. A.
, and
Curran
,
H. J.
,
2013
, “
A High Temperature and Atmospheric Pressure Experimental and Detailed Chemical Kinetic Modelling Study of 2-Methyl Furan Oxidation
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
225
232
.
59.
Togbé
,
C.
,
Tran
,
L.-S.
,
Liu
,
D.
,
Felsmann
,
D.
,
Oßwalda
,
P.
,
Glaude
,
P.-A.
,
Sirjean
,
B.
,
Fournet
,
R.
,
Battin-Leclerc
,
F.
, and
Kohse-Höinghaus
,
K.
,
2014
, “
Combustion Chemistry and Flame Structure of Furan Group Biofuels Using Molecular-Beam Mass Spectrometry and Gas Chromatography—Part III: 2,5-Dimethylfuran
,”
Combust. Flame
,
161
(
3
), pp.
780
797
.
60.
Wu
,
X.
,
Huang
,
Z.
,
Jin
,
C.
,
Wang
,
X.
,
Zheng
,
B.
,
Zhang
,
Y.
, and
Wei
,
L.
,
2009
, “
Measurements of Laminar Burning Velocities and Markstein Lengths of 2, 5 Dimethylfuran-air-Diluent Premixed Flames
,”
Energy Fuels
,
23
(
9
), pp.
4355
4362
.
61.
Xu
,
N.
,
Wu
,
Y.
,
Tang
,
C.
,
Zhang
,
P.
,
He
,
X.
,
Wang
,
Z.
, and
Huang
,
Z.
,
2016
, “
Experimental Study of 2,5-Dimethylfuran and 2-Methylfuran in a Rapid Compression Machine: Comparison of the Ignition Delay Times and Reactivity at Low to Intermediate Temperature
,”
Combust. Flame
,
168
, pp.
216
227
.
62.
Wu
,
X.
,
Huang
,
Z.
,
Wang
,
X.
,
Jin
,
C.
,
Tang
,
C.
,
Wei
,
L.
, and
Law
,
C. K.
,
2011
, “
Laminar Burning Velocities and Flame Instabilities of 2,5-Dimethylfuran-Air Mixtures at Elevated Pressures
,”
Combust. Flame
,
158
(
3
), pp.
539
546
.
63.
Lifshitz
,
A.
,
Bidani
,
M.
, and
Bidani
,
S.
,
1986
, “
Thermal Reactions of Cyclic Ethers at High Temperatures—Part 3: Pyrolysis of Furan Behind Reflected Shocks
,”
J. Phys. Chem.
,
90
(
21
), pp.
5373
5377
.
64.
Sirjean
,
B.
,
Fournet
,
R.
,
Glaude
,
P.-A.
,
Battin-Leclerc
,
F.
,
Wang
,
W.
, and
Oehlschlaeger
,
M. A.
,
2013
, “
Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2,5-Dimethylfuran
,”
J. Phys. Chem. A
,
117
(
7
), pp.
1371
1392
.
65.
Tian
,
Z.
,
Yuan
,
T.
,
Fournet
,
R.
,
Glaude
,
P. A.
,
Sirjean
,
B.
,
Battin-Leclerc
,
F.
,
Zhang
,
K.
, and
Qi
,
F.
,
2011
, “
An Experimental and Kinetic Investigation of Premixed Furan/Oxygen/Argon Flames
,”
Combust. Flame
,
158
(
4
), pp.
756
773
.
66.
Tran
,
L. S.
,
Wang
,
Z.
,
Carstensen
,
H. H.
,
Hemken
,
C.
,
Battin-Leclerc
,
F.
, and
Kohse-Höinghaus
,
K.
,
2017
, “
Comparative Experimental and Modeling Study of the Low- to Moderate-Temperature Oxidation Chemistry of 2,5-Dimethylfuran, 2-Methylfuran, and Furan
,”
Combust. Flame
,
181
, pp.
251
269
.
67.
Xiao
,
M.
,
Changzhao
,
J.
, and
Hongming
,
X.
, and
Richardson
,
S.
,
2012
, “
In-Cylinder Optical Study on Combustion of DMF and DMF Fuel Blends
,”
SAE Technical Paper No. 2012-01-1235
.
68.
Tian
,
G.
,
Daniel
,
R.
,
Li
,
H.
,
Xu
,
H.
,
Shuai
,
S.
, and
Richards
,
P.
,
2010
, “
Laminar Burning Velocities of 2,5-Dimethylfuran Compared With Ethanol and Gasoline
,”
Energy Fuels
,
24
(
7
), pp.
3898
3905
.
69.
Pan
,
M.
,
Shu
,
G.
,
Pan
,
J.
,
Wei
,
H.
,
Feng
,
D.
,
Guo
,
Y.
, and
Liang
,
Y.
,
2014
, “
Performance Comparison of 2-Methylfuran and Gasoline on a Spark-Ignition Engine With Cooled Exhaust Gas Recirculation
,”
Fuel
,
132
, pp.
36
43
.
70.
Wei
,
H.
,
Feng
,
D.
,
Shu
,
G.
,
Pan
,
M.
,
Guo
,
Y.
,
Gao
,
D.
, and
Li
,
W.
,
2014
, “
Experimental Investigation on the Combustion and Emissions Characteristics of 2-Methylfuran Gasoline Blend Fuel in Spark-Ignition Engine
,”
Appl. Energy
,
132
, pp.
317
324
.
71.
Rothamer
,
D. A.
, and
Jennings
,
J. H.
,
2012
, “
Study of the Knocking Propensity of 2,5-Dimethylfuran-Gasoline and Ethanol-Gasoline Blends
,”
Fuel
,
98
, pp.
203
212
.
72.
Wei
,
H.
,
Gao
,
D.
,
Zhou
,
L.
,
Feng
,
D.
,
Chen
,
C.
, and
Pei
,
Z.
,
2016
, “
Experimental Analysis on Spray Development of 2-Methylfuran-Gasoline Blends Using Multi-Hole dI Injector
,”
Fuel
,
164
, pp.
245
253
.
73.
Wu
,
X.
,
Daniel
,
R.
,
Tian
,
G.
,
Xu
,
H.
,
Huang
,
Z.
, and
Richardson
,
D.
,
2011
, “
Dual-Injection: The Flexible, bi-Fuel Concept for Spark-Ignition Engines Fuelled With Various Gasoline and Biofuel Blends
,”
Appl. Energy
,
88
(
7
), pp.
2305
2314
.
74.
Lee
,
C.
,
Vranckx
,
S.
,
Heufer
,
K. A.
,
Khomik
,
S. V.
,
Uygun
,
Y.
,
Olivier
,
H.
, and
Fernandez
,
R. X.
,
2012
, “
On the Chemical Kinetics of Ethanol Oxidation: Shock Tube, Rapid Compression Machine and Detailed Modeling Study
,”
Z. Für Phys. Chem.
,
226
(
1
), pp.
1
28
.
75.
Ji
,
W.
,
Ren
,
Z.
, and
Law
,
C. K.
,
2018
, “
Evolution of Sensitivity Directions During Autoignition
,”
Proc. Combust. Inst.
(in press). https://www.sciencedirect.com/science/article/pii/S1540748918304231
You do not currently have access to this content.