The rate-controlled constrained-equilibrium (RCCE), a model order reduction method, has been further developed to simulate the combustion of propane/oxygen mixture diluted with nitrogen or argon. The RCCE method assumes that the nonequilibrium states of a system can be described by a sequence of constrained-equilibrium states subject to a small number of constraints. The developed new RCCE approach is applied to the oxidation of propane in a constant volume, constant internal energy system over a wide range of initial temperatures and pressures. The USC-Mech II (109 species and 781 reactions, without nitrogen chemistry) is chosen as chemical kinetic mechanism for propane oxidation for both detailed kinetic model (DKM) and RCCE method. The derivation for constraints of propane/oxygen mixture starts from the eight universal constraints for carbon-fuel oxidation. The universal constraints are the elements (C, H, O), number of moles, free valence, free oxygen, fuel, and fuel radicals. The full set of constraints contains eight universal constraints and seven additional constraints. The results of RCCE method are compared with the results of DKM to verify the effectiveness of constraints and the efficiency of RCCE. The RCCE results show good agreement with DKM results under different initial temperature and pressures, and RCCE also reduces at least 60% CPU time. Further validation is made by comparing the experimental data; RCCE shows good agreement with shock tube experimental data.

References

References
1.
Bansal
,
G.
,
Im
,
H.
, and
Lee
,
S.
,
2009
, “
Auto-Ignition of a Homogeneous Hydrogen–Air Mixture Subjected to Unsteady Temperature Fluctuations
,”
Combust. Theory Modell.
,
13
(
3
), pp.
413
425
.
2.
Sitte
,
M.
,
Bach
,
E.
,
Kariuki
,
J.
,
Bauer
,
H.
, and
Mastorakos
,
E.
,
2016
, “
Simulations and Experiments on the Ignition Probability in Turbulent Premixed Bluff-Body Flames
,”
Combust. Theory Modell.
,
20
(
3
), pp.
548
565
.
3.
Lim
,
K.
,
Chao
,
B.
,
Sunderland
,
P.
, and
Axelbaum
,
R.
,
2008
, “
A Theoretical Study of Spontaneous Ignition of Fuel Jets in an Oxidizing Ambient With Emphasis on Hydrogen Jets
,”
Combust. Theory Modell.
,
12
(
6
), pp.
1179
1196
.
4.
Tan
,
Y.
,
Dagaut
,
P.
,
Cathonnet
,
M.
, and
Boettner
,
J.
,
1994
, “
Oxidation and Ignition of Methane-Propane and Methane-Ethane-Propane Mixtures: Experiments and Modeling
,”
Combust. Sci. Technol.
,
103
(
1–6
), pp.
133
151
.
5.
Yu
,
G.
,
Askari
,
O.
,
Hadi
,
F.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2017
, “
Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022202
.
6.
Yu
,
G.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2018
, “
Theoretical Prediction of the Effect of Blending JP-8 With Syngas on the Ignition Delay Time and Laminar Burning Speed
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012204
.
7.
Smooke
,
M.
, and
Giovangigli
,
V.
,
1991
, “
Premixed and Nonpremixed Test Problem Results
,”
Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames
,
Springer
,
Berlin Heidelberg
, pp.
29
47
.
8.
Bodenstein
,
M.
, and
Lind
,
S.
,
1907
, “
Geschwindigkeit Der Bildung Des Bromwasserstoffs Aus Seinen Elementen
,”
Z. Für Physikalische Chem.
,
57
(
1
), pp.
168
192
.
9.
Rein
,
M.
,
1992
, “
The Partial‐Equilibrium Approximation in Reacting Flows
,”
Phys. Fluids A: Fluid Dyn.
,
4
(
5
), pp.
873
886
.
10.
Maas
,
U.
, and
Pope
,
S.
,
1992
, “
Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space
,”
Combust. Flame
,
88
(
3–4
), pp.
239
264
.
11.
Pope
,
S.
, and
Maas
,
U.
,
1993
, “
Simplifying Chemical Kinetics: Trajectory-Generated Low-Dimensional Manifolds
,” Mechanical and Aerospace Engineering Report, FDA, Ithaca, NY, Cornell Report FDA 93--11.
12.
Nahvi
,
S.
,
Nabi
,
M.
, and
Janardhanan
,
S.
,
2012
, “
A Quasi-Linearisation Approach to Trajectory Based Methods for Nonlinear MOR
,”
International Conference on Modelling, Identification and Control
, Wuhan, Hubei, China, June 24–26, pp. 217–222.
13.
Bykov
,
V.
, and
Maas
,
U.
,
2007
, “
The Extension of the ILDM Concept to Reaction–Diffusion Manifolds
,”
Combust. Theory Modell.
,
11
(
6
), pp.
839
862
.
14.
Bykov
,
V.
, and
Maas
,
U.
,
2009
, “
Problem Adapted Reduced Models Based on Reaction–Diffusion Manifolds (REDIMs)
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
561
568
.
15.
Lebiedz
,
D.
,
2004
, “
Computing Minimal Entropy Production Trajectories: An Approach to Model Reduction in Chemical Kinetics
,”
J. Chem. Phys.
,
120
(
15
), pp.
6890
6897
.
16.
Lam
,
S.
, and
Goussis
,
D.
,
1994
, “
The CSP Method for Simplifying Kinetics
,”
Int. J. Chem. Kinetics
,
26
(
4
), pp.
461
486
.
17.
Løvås
,
T.
,
2009
, “
Automatic Generation of Skeletal Mechanisms for Ignition Combustion Based on Level of Importance Analysis
,”
Combust. Flame
,
156
(
7
), pp.
1348
1358
.
18.
Schwer
,
D.
,
Lu
,
P.
, and
Green
,
W.
,
2003
, “
An Adaptive Chemistry Approach to Modeling Complex Kinetics in Reacting Flows
,”
Combust. Flame
,
133
(
4
), pp.
451
465
.
19.
Van Oijen
,
J.
, and
De Goey
,
L. P. H.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.
20.
Lu
,
T.
, and
Law
,
C.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.
21.
Ren
,
Z.
,
Pope
,
S.
,
Vladimirsky
,
A.
, and
Guckenheimer
,
J.
,
2007
, “
Application of the ICE-PIC Method for the Dimension Reduction of Chemical Kinetics Coupled With Transport
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
473
481
.
22.
Ren
,
Z.
,
Pope
,
S.
,
Vladimirsky
,
A.
, and
Guckenheimer
,
J.
,
2006
, “
The Invariant Constrained Equilibrium Edge Preimage Curve Method for the Dimension Reduction of Chemical Kinetics
,”
J. Chem. Phys.
,
124
(
11
), p.
114111
.
23.
Valorani
,
M.
, and
Paolucci
,
S.
,
2009
, “
The G-Scheme: A Framework for Multi-Scale Adaptive Model Reduction
,”
J. Comput. Phys.
,
228
(
13
), pp.
4665
4701
.
24.
Chiavazzo
,
E.
, and
Karlin
,
I.
,
2011
, “
Adaptive Simplification of Complex Multiscale Systems
,”
Phys. Rev. E
,
83
(
3
), p.
036706
.
25.
Chiavazzo
,
E.
,
2012
, “
Approximation of Slow and Fast Dynamics in Multiscale Dynamical Systems by the Linearized Relaxation Redistribution Method
,”
J. Comput. Phys.
,
231
(
4
), pp.
1751
1765
.
26.
Chiavazzo
,
E.
,
Gear
,
C.
,
Dsilva
,
C.
,
Rabin
,
N.
, and
Kevrekidis
,
I.
,
2014
, “
Reduced Models in Chemical Kinetics Via Nonlinear Data-Mining
,”
Processes
,
2
(
1
), pp.
112
140
.
27.
Keck
,
J.
, and
Gillespie
,
D.
,
1971
, “
Rate-Controlled Partial-Equilibrium Method for Treating Reacting Gas Mixtures
,”
Combust. Flame
,
17
(
2
), pp.
237
241
.
28.
Keck
,
J.
,
1990
, “
Rate-Controlled Constrained-Equilibrium Theory of Chemical Reactions in Complex Systems
,”
Prog. Energy Combust. Sci.
,
16
(
2
), pp.
125
154
.
29.
Law
,
R.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1989
, “
Rate-Controlled Constrained-Equilibrium Calculation of Ignition Delay Times in Hydrogen-Oxygen Mixtures
,”
Symp. (Int.) Combust.
,
22
(
1
), pp.
1705
1713
.
30.
Ugarte
,
S.
,
Gao
,
Y.
, and
Metghalchi
,
M.
,
2005
, “
Application of the Maximum Entropy Principle in the Analysis of a Non-Equilibrium Chemically Reacting Mixture
,”
Int. J. Thermodyn.
,
8
(
1
), pp.
43
53
.http://dergipark.gov.tr/ijot/issue/5755/76686
31.
Hamiroune
,
D.
,
Bishnu
,
P.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1998
, “
Rate-Controlled Constrained Equilibrium Method Using Constraint Potentials
,”
Combust. Theory Model.
,
2
(
1
), pp.
81
94
.
32.
Janbozorgi
,
M.
,
Gao
,
Y.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
2006
, “
Rate-Controlled Constrained-Equilibrium Calculations of Ethanol-Oxygen Mixture
,”
ASME
Paper No. IMECE2006-15667.
33.
Hadi
,
F.
, and
Sheikhi
,
M.
,
2016
, “
A Comparison of Constraint and Constraint Potential Forms of the Rate-Controlled Constraint-Equilibrium Method
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022202
.
34.
Hadi
,
F.
,
Janbozorgi
,
M.
,
Sheikhi
,
M. R. H.
, and
Metghalchi
,
H.
,
2016
, “
A Study of Interactions Between Mixing and Chemical Reaction Using the Rate-Controlled Constrained-Equilibrium Method
,”
J. Non-Equilibrium Thermodyn.
,
41
(
4
), pp.
257
278
.
35.
Bishnu
,
P. S.
,
Hamiroune
,
D.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1997
, “
Constrained-Equilibrium Calculations for Chemical Systems Subject to Generalized Linear Constraints Using the NASA and STANJAN Equilibrium Programs
,”
Combust. Theory Modell.
,
1
(
3
), pp.
295
312
.
36.
Safari
,
M.
,
Hadi
,
F.
, and
Sheikhi
,
M.
,
2014
, “
Progress in the Prediction of Entropy Generation in Turbulent Reacting Flows Using Large Eddy Simulation
,”
Entropy
,
16
(
10
), pp.
5159
5177
.
37.
Sheikhi
,
M.
,
Safari
,
M.
, and
Hadi
,
F.
,
2015
, “
Entropy Filtered Density Function for Large Eddy Simulation of Turbulent Flows
,”
AIAA J.
,
53
(
9
), pp.
2571
2587
.
38.
Robert
,
L.
,
Metghalchi
,
M.
, and
Keck
,
J.
,
1989
, “
Rate-Controlled Constrained Equilibrium Calculation of Ignition Delay Times in Hydrogen-Oxygen Mixtures
,”
Symp. (Int.) Combust.
,
22
(
1
), pp.
1705
1713
.
39.
Beretta
,
G. P.
,
Keck
,
J. C.
,
Janbozorgi
,
M.
, and
Metghalchi
,
M.
,
2012
, “
The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics
,”
Entropy
,
14
(
2
), pp.
92
130
.
40.
Bishnu
,
P.
,
Hamiroune
,
D.
, and
Metghalchi
,
M.
,
2001
, “
Development of Constrained Equilibrium Codes and Their Applications in Nonequilibrium Thermodynamics
,”
ASME J. Energy Resour. Technol.
,
123
(
3
), pp.
214
220
.
41.
Janbozorgi
,
M.
,
Ugarte
,
S.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
2009
, “
Combustion Modeling of Mono-Carbon Fuels Using the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
156
(
10
), pp.
1871
1885
.
42.
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2009
, “
Rate-Controlled Constrained-Equilibrium Theory Applied to the Expansion of Combustion Products in the Power Stroke of an Internal Combustion Engine
,”
Int. J. Thermodyn.
,
12
(
1
), pp.
44
50
.
43.
Ghassan
,
N.
, and
Metghalchi
,
H.
,
2016
, “
Development of the Rate-Controlled Constrained-Equilibrium Method for Modeling of Ethanol Combustion
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022205
.
44.
Hiremath
,
V.
,
Ren
,
Z.
, and
Pope
,
S.
,
2010
, “
A Greedy Algorithm for Species Selection in Dimension Reduction of Combustion Chemistry
,”
Combust. Theory Modell.
,
14
(
5
), pp.
619
652
.
45.
Hiremath
,
V.
,
Lantz
,
S.
,
Wang
,
H.
, and
Pope
,
S.
,
2013
, “
Large-Scale Parallel Simulations of Turbulent Combustion Using Combined Dimension Reduction and Tabulation of Chemistry
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
205
215
.
46.
Hiremath
,
V.
,
Ren
,
Z.
, and
Pope
,
S.
,
2011
, “
Combined Dimension Reduction and Tabulation Strategy Using ISAT–RCCE–GALI for the Efficient Implementation of Combustion Chemistry
,”
Combust. Flame
,
158
(
11
), pp.
2113
2127
.
47.
Hiremath
,
V.
, and
Pope
,
S.
,
2013
, “
A Study of the Rate-Controlled Constrained-Equilibrium Dimension Reduction Method and Its Different Implementations
,”
Combust. Theory Modell.
,
17
(
2
), pp.
260
293
.
48.
Yousefian
,
V.
,
1998
, “
A Rate-Controlled Constrained-Equilibrium Thermochemistry Algorithm for Complex Reacting Systems
,”
Combust. Flame
,
115
(
1–2
), pp.
66
80
.
49.
Beretta
,
G.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Degree of Disequilibrium Analysis for Automatic Selection of Kinetic Constraints in the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
168
, pp.
342
364
.
50.
Janbozorgi
,
M.
, and
Metghalchi
,
M.
,
2012
, “
Rate-Controlled Constrained-Equilibrium Modeling of H/O Reacting Nozzle Flow
,”
J. Propul. Power
,
28
(
4
), pp.
677
684
.
51.
Jones
,
W.
, and
Rigopoulos
,
S.
,
2005
, “
Rate-Controlled Constrained Equilibrium: Formulation and Application to Nonpremixed Laminar Flames
,”
Combust. Flame
,
142
(
3
), pp.
223
234
.
52.
Jones
,
W.
, and
Rigopoulos
,
S.
,
2007
, “
Reduced Chemistry for Hydrogen and Methanol Premixed Flames Via RCCE
,”
Combust. Theory Modell.
,
11
(
5
), pp.
755
780
.
53.
Navarro-Martinez
,
S.
, and
Rigopoulos
,
S.
,
2012
, “
Differential Diffusion Modelling in LES with RCCE-Reduced Chemistry
,”
Flow, Turbul. Combust.
,
89
(
2
), pp.
311
328
.
54.
Chatzopoulos
,
A.
, and
Rigopoulos
,
S.
,
2013
, “
A Chemistry Tabulation Approach Via Rate-Controlled Constrained Equilibrium (RCCE) and Artificial Neural Networks (ANNs), With Application to Turbulent Non-Premixed CH4/H2/N2 Flames
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1465
1473
.
55.
Elbahloul
,
S.
, and
Rigopoulos
,
S.
,
2015
, “
Rate-Controlled Constrained Equilibrium (RCCE) Simulations of Turbulent Partially Premixed Flames (Sandia D/E/F) and Comparison With Detailed Chemistry
,”
Combust. Flame
,
162
(
5
), pp.
2256
2271
.
56.
Rigopoulos
,
S.
, and
Løvås
,
T.
,
2009
, “
A LOI–RCCE Methodology for Reducing Chemical Kinetics, With Application to Laminar Premixed Flames
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
569
576
.
57.
Cadman
,
P.
,
Thomas
,
G.
, and
Butler
,
P.
,
2000
, “
The Auto-Ignition of Propane at Intermediate Temperatures and High Pressures
,”
Phys. Chem. Chem. Phys.
,
2
(
23
), pp.
5411
5419
.
58.
Herzler
,
J.
,
Jerig
,
L.
, and
Roth
,
P.
,
2004
, “
Shock-Tube Study of the Ignition of Propane at Intermediate Temperatures and High Pressures
,”
Combust. Sci. Technol.
,
176
(
10
), pp.
1627
1637
.
59.
Petersen
,
E.
,
Lamnaouer
,
M.
,
de Vries
,
J.
,
Curran
,
H.
,
Simmie
,
J.
,
Fikri
,
M.
,
Schulz
,
C.
, and
Bourque
,
G.
,
2007
, “
Discrepancies Between Shock Tube and Rapid Compression Machine Ignition at Low Temperatures and High Pressures
,”
26th International Symposium on Shock Waves
, Vol.
1
, July 15–20, Göttingen, Germany, Paper No. 0911.
60.
Askari
,
O.
,
Beretta
,
G.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2016
, “
On the Thermodynamic Properties of Thermal Plasma in the Flame Kernel of Hydrocarbon/Air Premixed Gases
,”
Eur. Phys. J. D
,
70
(
8
), p.
159
.
61.
Wang
,
H.
,
You
,
X.
,
Joshi
,
A.
,
Davis
,
S.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C.
,
2007
, “
USC Mech Version II: High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds
,” Combustion Kinetics Laboratory, Los Angeles, CA, accessed Sept. 6, 2018, http://ignis.usc.edu/USC_Mech_II.htm
62.
Lam
,
K.
,
Hong
,
Z.
,
Davidson
,
D.
, and
Hanson
,
R.
,
2011
, “
Shock Tube Ignition Delay Time Measurements in Propane/O2/Argon Mixtures at Near-Constant-Volume Conditions
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
251
258
.
You do not currently have access to this content.