In this work, numerical investigations of methane catalytic combustion in the opposed counter-flow microcombustor are conducted under various inlet velocities, equivalence ratios, and geometric parameters. The results indicate that the high temperature zone is mainly located at the front and middle parts of the reaction zone. With the increase of inlet velocity, both methane conversion and exhaust gas temperature decrease, while the methane concentration in the downstream area increases. Its maximum velocity limit is 2.9 m/s. Moreover, temperature step zones of opposed counter-flow are obviously located at the front and middle parts with different equivalence ratios. The combustion efficiency decreases slowly with the increase of equivalence ratios. More importantly, critical values about the geometric parameters are determined for keeping better thermal performance. It is concluded that inlet velocity limit and methane conversion rate can be significantly increased and the temperature distribution is more uniform via reducing inlet width L2 and inlet height H, increasing the length of the downstream parts L1 and the downstream entrance length L3. In general, the opposed counter-flow microcombustor with optimized structure has better combustion stability. This design offers another way for developing the opposed counter-flow microcombustor.

References

References
1.
Nabaglo
,
D.
,
Kurek
,
T.
, and
Wojdan
,
K.
,
2018
, “
Combustion Process Analysis and Diagnostic Using Optical Flame Scanners in Front-Fired Pulverized Coal Boiler
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072003
.
2.
Zuo
,
W.
,
Jiaqiang
,
E.
,
Peng
,
Q.
,
Zhao
,
X.
, and
Zhang
,
Z.
,
2017
, “
Numerical Investigations on a Comparison Between Counterflow and Coflow Double-Channel Micro Combustors for Micro-Thermophotovoltaic System
,”
Energy
,
122
, pp.
408
419
.
3.
Feser
,
J.
, and
Gupta
,
A. K.
,
2018
, “
Effect of CO2/N2 Dilution on Flame Stability in a Premixed Methane-Air Flame Under Strained Condition
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072207
.
4.
Razvan
,
C.
,
Tudor
,
P.
,
Malina
,
P.
, and
Iuliana
,
S.
,
2018
, “
Swirl Injector for Premixed Combustion of Hydrogen-Methane Mixtures
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072002
.
5.
Li
,
H. J.
,
Chen
,
Y. R.
,
Yan
,
Y. F.
,
Hu
,
C.
,
Fan
,
H.
, and
Feng
,
S.
,
2018
, “
Numerical Study on Heat Transfer Enhanced in a Microcombustor With Staggered Cylindrical Array for Micro-Thermophotovoltaic System
,”
ASME J. Energy Resour. Technol.
,
140
(11), p. 112204.
6.
Zhang
,
Z. C.
,
Yuan
,
W.
,
Deng
,
J.
,
Tang
,
Y.
,
Li
,
Z. T.
, and
Tang
,
K. R.
,
2016
, “
Methanol Catalytic Micro-Combustor With Pervaporation-Based m Ethanol Supply System
,”
Chem. Eng. J.
,
283
, pp.
982
991
.
7.
Fan
,
A. W.
,
Zhang
,
H.
, and
Wan
,
J. L.
,
2017
, “
Numerical Investigations on Flame Blow-Off Limit of a Novel Microscale Swiss-Roll Combustor With a Bluff-Body
,”
Energy
,
123
, pp.
252
259
.
8.
Jiaqiang
,
E.
,
Peng
,
Q.
, and
Zhao
,
X.
,
2017
, “
Numerical Investigation on the Combustion Characteristics of Non-Premixed Hydrogen-Air in a Novel Micro-Combustor
,”
Appl. Therm. Eng.
,
110
, pp.
665
677
.
9.
Lee
,
M. J.
,
Cho
,
S. M.
,
Choi
,
B. I.
, and
Kim
,
N. I.
,
2010
, “
Scale and Material Effects on Flame Characteristics in Small Heat Recirculation Combustors of a Counter-Current Channel Type
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
2227
2235
.
10.
Lee
,
M. J.
, and
Kim
,
N. I.
,
2010
, “
Experiment on the Effect of Pt-Catalyst on the Characteristics of a Small Heat-Regenerative CH4-Air Premixed Combustor
,”
Appl. Energy
,
87
(
11
), pp.
3409
3416
.
11.
Taywade
,
U. W.
,
Deshpande
.,
A. A.
, and
Kumar
,
S.
,
2013
, “
Thermal Performance of a Micro Combustor With Heat Re-Circulation
,”
Fuel Process. Tech.
,
109
, pp.
179
188
.
12.
Khandelwal
,
B.
,
Deshpande
,
A. A.
, and
Kumar
,
S.
,
2013
, “
Experimental Studies on Flame Stabilization in a Three Step Rearward Facing Configuration Based Micro Channel Combustor
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
363
368
.
13.
Lee
,
K. H.
, and
Kwon
,
O. C.
,
2008
, “
Studies on a Heat-Recirculating Micro Emitter for a Micro Thermo Photovoltaic System
,”
Combust. Flame
,
153
(
1–2
), pp.
161
172
.
14.
Kuo
,
C. H.
, and
Ronney
,
P. D.
,
2007
, “
Numerical Modeling of Non-Adiabatic Heat-Recirculating Combustors
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3277
3284
.
15.
Yang
,
W. J.
,
Wang
,
Y. F.
,
Zhou
,
J. H.
,
Zhou
,
J. S.
,
Wang
,
Z. H.
, and
Cen
,
K. F.
,
2017
, “
Catalytic Self-Sustaining Combustion of the Alkanes With Pt/ZSM-5 Packed Bed in a Micro Scale Tube
,”
Chem. Eng. Sci.
,
158
, pp.
30
36
.
16.
Zuo
,
W.
,
Jiaqiang
,
E.
,
Peng
,
Q.
,
Zhao
,
X.
, and
Zhang
,
Z.
,
2017
, “
Numerical Investigations on Thermal Performance of a Micro-Cylindrical Combustor With Gradually Reduced Wall Thickness
,”
Appl. Therm. Eng.
,
113
, pp.
1011
1020
.
17.
Jiaqiang
,
E.
,
Wei
,
Z.
,
Xueling
,
L.
,
Qingguo
,
P.
,
Yuanwang
,
D.
, and
Hao
,
Z.
,
2016
, “
Effects of Inlet Pressure on Wall Temperature and Exergy Efficiency of the Micro-Cylindrical Combustor With a Step
,”
Appl. Energy
,
175
, pp.
337
345
.
18.
Tang
,
A.
,
Deng
,
J.
,
Cai
,
T.
,
Xu
,
Y.
, and
Pan
,
J.
,
2017
, “
Combustion Characteristics of Premixed Propane/Hydrogen/Air in the Micro-Planar Combustor With Different Channel-Heights
,”
Appl. Energy
,
203
, pp.
635
642
.
19.
Smyth
,
S. A.
, and
Dimitrios
,
C.
,
2012
, “
Kyritsis Experimental Determination of the Structure of Catalytic Micro-Combustion Flows Over Small-Scale Flat Plates for Methane and Propane Fuel
,”
Combust. Flame
,
159
(
2
), pp.
802
816
.
20.
Fan
,
A.
,
Yao
,
H.
, and
Liu
,
W.
,
2012
,
Micro Scale Combustion
,
Science Press
,
Beijing, China
.
21.
Turns
,
S. R.
,
2000
,
An Introduction to Combustion
,
2nd ed.
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.