Direct injection spark ignition or gasoline direct injection (GDI) engines are superior in terms of relatively higher thermal efficiency and power output compared to multipoint port fuel injection engines and direct injection diesel engines. In this study, a 500 cc single cylinder GDI engine was used for experiments. Three gasohol blends (15% (v/v) ethanol/methanol/butanol with 85% (v/v) gasoline) were chosen for this experimental study and were characterized to determine their important fuel properties. For particulate investigations, exhaust particles were collected on a quartz filter paper using a partial flow dilution tunnel. Comparative investigations for particulate mass emissions, trace metal concentrations, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) analyses, and high-resolution transmission electron microscopy (HR-TEM) imaging of the particulate samples collected from different test fuels at different engine loads were performed. For majority of the experimental conditions, gasohols showed relatively lower trace metal concentration in particulates compared to gasoline. HR-TEM images showed that higher engine loads and presence of oxygen in the test fuels increased the soot reactivity. Multicore shells like structures were visible in the HR-TEM images due to growth of nuclei, and rapid soot formation due to relatively higher temperature and pressure environment of the engine combustion chamber. Researches world-over are trying to reduce particulate emissions from GDI engines; however there is a vast research gap for such investigations related to gasohol fueled GDI engines. This paper critically assesses and highlights comparative morphological characteristics of gasohol fueled GDI engine.

References

References
1.
Sharma
,
N.
,
2017
, “
Spray, Combustion, Emissions and Particulate Investigations of a Gasohol Fuelled Gasoline Direct Injection Engine
,” Doctoral thesis, Indian Institute of Technology Kanpur, Kanpur, India.
2.
Ben-Mansour
,
R.
,
Eyitope
,
B. O.
, and
Antar
,
M. A.
,
2016
, “
Simulation of Adsorptive Storage of CO2 in Fixed Bed of MOF-5
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012001
.
3.
Singh
,
A. P.
,
Bajpai
,
N.
, and
Agarwal
,
A. K.
,
2018
, “
Combustion Mode Switching Characteristics of a Medium-Duty Engine Operated in Compression Ignition/PCCI Combustion Modes
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092201
.
4.
Reddy
,
S. M.
,
Sharma
,
N.
,
Gupta
,
N.
, and
Agarwal
,
A. K.
,
2018
, “
Effect of Non-Edible Oil and Its Biodiesel on Wear of Fuel Injection Equipment Components of a Genset Engine
,”
Fuel
,
222
, pp.
841
851
.
5.
Mistri
,
G. K.
,
Aggarwal
,
S. K.
,
Longman
,
D.
, and
Agarwal
,
A. K.
,
2016
, “
Performance and Emission Investigations of Jatropha and Karanja Biodiesels in a Single-Cylinder Compression-Ignition Engine Using Endoscopic Imaging
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
011202
.
6.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2016
, “
Diesoline, Diesohol, and Diesosene Fuelled Hcci Engine Development
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052212
.
7.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2018
, “
Evaluation of Fuel Injection Strategies for Biodiesel-Fueled CRDI Engine Development and Particulate Studies
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102201
.
8.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2017
, “
Effect of the Fuel Injection Pressure on Particulate Emissions From a Gasohol (E15 and M15)-Fueled Gasoline Direct Injection Engine
,”
Energy Fuels
,
31
(
4
), pp.
4155
4164
.
9.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2016
, “
An Experimental Study of Microscopic Spray Characteristics of a GDI Injector Using Phase Doppler Interferometry
,”
SAE
Paper No. 0148-7191.
10.
Wrobel
,
A.
,
Rokita
,
E.
, and
Maenhaut
,
W.
,
2000
, “
Transport of Traffic-Related Aerosols in Urban Areas
,”
Sci. Total Environ.
,
257
(
2–3
), pp.
199
211
.
11.
Agarwal
,
A. K.
,
Ateeq
,
B.
,
Gupta
,
T.
,
Singh
,
A. P.
,
Pandey
,
S. K.
,
Sharma
,
N.
,
Agarwal
,
R. A.
,
Gupta
,
N. K.
,
Sharma
,
H.
, and
Jain
,
A.
,
2018
, “
Toxicity and Mutagenicity of Exhaust From Compressed Natural Gas: Could This Be a Clean Solution for Megacities With Mixed-Traffic Conditions?
,”
Environ. Pollut.
,
239
, pp.
499
511
.
12.
Agarwal
,
A. K.
,
Dhar
,
A.
,
Srivastava
,
D. K.
,
Maurya
,
R. K.
, and
Singh
,
A. P.
,
2013
, “
Effect of Fuel Injection Pressure on Diesel Particulate Size and Number Distribution in a CRDI Single Cylinder Research Engine
,”
Fuel
,
107
, pp.
84
89
.
13.
Reddy
,
M. S.
,
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2016
, “
Effect of Straight Vegetable Oil Blends and Biodiesel Blends on Wear of Mechanical Fuel Injection Equipment of a Constant Speed Diesel Engine
,”
Renewable Energy
,
99
, pp.
1008
1018
.
14.
Aucelio
,
R. Q.
, and
Curtius
,
A. J.
,
2002
, “
Evaluation of Electrothermal Atomic Absorption Spectrometry for Trace Determination of Sb, as and Se in Gasoline and Kerosene Using Microemulsion Sample Introduction and Two Approaches for Chemical Modification
,”
J. Anal. Atomic Spectrom.
,
17
(
3
), pp.
242
247
.
15.
Du
,
B.
,
Wei
,
Q.
,
Wang
,
S.
, and
Yu
,
W.
,
1997
, “
Application of Microemulsions in Determination of Chromium Naphthenate in Gasoline by Flame Atomic Absorption Spectroscopy
,”
Talanta
,
44
(
10
), pp.
1803
1806
.
16.
Rosen
,
H.
, and
Novakov
,
T.
,
1977
, “
Raman Scattering and the Characterisation of Atmospheric Aerosol Particles
,”
Nature
,
266
(
5604
), pp.
708
710
.
17.
Rosen
,
H.
, and
Novakov
,
T.
,
1978
, “
Identification of Primary Particulate Carbon and Sulfate Species by Raman Spectroscopy
,”
Atmos. Environ.
,
12
(
4
), pp.
923
927
.
18.
Dippel
,
B.
, and
Heintzenberg
,
J.
,
1999
, “
Soot Characterization in Atmospheric Particles From Different Sources by NIR FT Raman Spectroscopy
,”
J. Aerosol Sci.
,
30
, pp.
S907
S908
.
19.
Jawhari
,
T.
,
Roid
,
A.
, and
Casado
,
J.
,
1995
, “
Raman Spectroscopic Characterization of Some Commercially Available Carbon Black Materials
,”
Carbon
,
33
(
11
), pp.
1561
1565
.
20.
Kittelson
,
D.
,
2006
, “
Ultrafine Particle Formation Mechanisms. University of Minnesota Center for Diesel Research
,”
South Coast Air Quality Management District Conference on Ultra-Fine Particles: Science, Technology and Policy Issues
, Los Angeles, CA, Apr. 30–May 2, pp. 1–37.http://www.aqmd.gov/docs/default-source/technology-research/ultrafine-particles-conference/session1_1_kittleson.pdf
21.
Cheung
,
K.
,
Ntziachristos
,
L.
,
Tzamkiozis
,
T.
,
Schauer
,
J.
,
Samaras
,
Z.
,
Moore
,
K.
, and
Sioutas
,
C.
,
2010
, “
Emissions of Particulate Trace Elements, Metals and Organic Species From Gasoline, Diesel, and Biodiesel Passenger Vehicles and Their Relation to Oxidative Potential
,”
Aerosol Sci. Technol.
,
44
(
7
), pp.
500
513
.
22.
Geller
,
M. D.
,
Ntziachristos
,
L.
,
Mamakos
,
A.
,
Samaras
,
Z.
,
Schmitz
,
D. A.
,
Froines
,
J. R.
, and
Sioutas
,
C.
,
2006
, “
Physicochemical and Redox Characteristics of Particulate Matter (PM) Emitted From Gasoline and Diesel Passenger Cars
,”
Atmos. Environ.
,
40
(
36
), pp.
6988
7004
.
23.
Johnson
,
J. P.
,
Kittelson
,
D. B.
, and
Watts
,
W. F.
,
2005
, “
Source Apportionment of Diesel and Spark Ignition Exhaust Aerosol Using on-Road Data From the Minneapolis Metropolitan Area
,”
Atmos. Environ.
,
39
(
11
), pp.
2111
2121
.
24.
Graskow
,
B. R.
,
Kittelson
,
D.
,
Abdul-Khalek
,
I.
,
Ahmadi
,
M.
, and
Morris
,
J.
,
1998
, “
Characterization of Exhaust Particulate Emissions From a Spark Ignition Engine
,”
SAE
Paper No. 0148-7191.
25.
Maricq
,
M. M.
,
Podsiadlik
,
D. H.
, and
Chase
,
R. E.
,
1999
, “
Gasoline Vehicle Particle Size Distributions: Comparison of Steady State, FTP, and US06 Measurements
,”
Environ. Sci. Technol.
,
33
(
12
), pp.
2007
2015
.
26.
Korn
,
M. D. G. A.
,
dos Santos
,
D. S. S.
,
Welz
,
B.
,
Vale
,
M. G. R.
,
Teixeira
,
A. P.
,
de Castro Lima
,
D.
, and
Ferreira
,
S. L. C.
,
2007
, “
Atomic Spectrometric Methods for the Determination of Metals and Metalloids in Automotive Fuels–a Review
,”
Talanta
,
73
(
1
), pp.
1
11
.
27.
Jain
,
A.
,
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2017
, “
Effect of Split Fuel Injection and EGR on NOx and PM Emission Reduction in a Low Temperature Combustion (LTC) Mode Diesel Engine
,”
Energy
,
122
, pp.
249
264
.
28.
Agarwal
,
A. K.
,
Gupta
,
T.
, and
Kothari
,
A.
,
2010
, “
Toxic Potential Evaluation of Particulate Matter Emitted From a Constant Speed Compression Ignition Engine: A Comparison Between Straight Vegetable Oil and Mineral Diesel
,”
Aerosol Sci. Technol.
,
44
(
9
), pp.
724
733
.
29.
Sunderman
,
F. W.
, Jr
,
1978
, “
Carcinogenic Effects of Metals
,”
Fed. Proc.
,
37
(
1
), pp. 40–46.
30.
Ghio
,
A. J.
,
1999
, “
Metals Associated With Both the Water-Soluble and Insoluble Fractions of an Ambient Air Pollution Particle Catalyze an Oxidative Stress
,”
Inhalation Toxicol.
,
11
(
1
), pp.
37
49
.
31.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
32.
Singh
,
A. P.
,
Pal
,
A.
, and
Agarwal
,
A. K.
,
2016
, “
Comparative Particulate Characteristics of Hydrogen, CNG, HCNG, Gasoline and Diesel Fueled Engines
,”
Fuel
,
185
, pp.
491
499
.
33.
Termini
,
J.
,
2000
, “
Hydroperoxide-Induced DNA Damage and Mutations
,”
Mutat. Res./Fundam. Mol. Mech. Mutagen.
,
450
(
1–2
), pp.
107
124
.
34.
Har-el
,
R.
, and
Chevion
,
M.
,
1991
, “
Zinc (II) Protects against Metal-Mediated Free Radical Induced Damage: Studies on Single and Double-Strand DNA Breakage
,”
Free Radical Res. Commun.
,
13
(
1
), pp.
509
515
.
35.
Ahmed
,
M.
,
Guo
,
X.
, and
Zhao
,
X.-M.
,
2016
, “
Determination and Analysis of Trace Metals and Surfactant in Air Particulate Matter During Biomass Burning Haze Episode in Malaysia
,”
Atmos. Environ.
,
141
, pp.
219
229
.
36.
Gangwar
,
J. N.
,
Gupta
,
T.
, and
Agarwal
,
A. K.
,
2012
, “
Composition and Comparative Toxicity of Particulate Matter Emitted From a Diesel and Biodiesel Fuelled CRDI Engine
,”
Atmos. Environ.
,
46
, pp.
472
481
.
37.
Chatterjee
,
C.
,
Gopal
,
R.
, and
Dube
,
B.
,
2006
, “
Physiological and Biochemical Responses of French Bean to Excess Cobalt
,”
J. Plant Nutr.
,
29
(
1
), pp.
127
136
.
38.
De Flora
,
S.
,
2000
, “
Threshold Mechanisms and Site Specificity in Chromium (VI) Carcinogenesis
,”
Carcinogenesis
,
21
(
4
), pp.
533
541
.
39.
Klein
,
C.
,
1996
, “
Carcinogenicity and Genotoxicity of Chromium
,”
Toxicology of Metals
,
L. W.
,
Chang
, ed.,
CRC Press
,
Boca Raton, FL
, pp.
205
219
.
40.
Galaris
,
D.
, and
Evangelou
,
A.
,
2002
, “
The Role of Oxidative Stress in Mechanisms of Metal-Induced Carcinogenesis
,”
Crit. Rev. Oncol./Hematol.
,
42
(
1
), pp.
93
103
.
41.
Stohs
,
S.
, and
Bagghi
,
D.
,
2005
, “
Oxidative Mechanisms in the Toxicity of Metal Ions
,”
Free Radical Biol. Med.
,
39
(
10
), pp.
1267
1268
.
42.
Athar
,
M.
,
Hasan
,
S. K.
, and
Srivastava
,
R. C.
,
1987
, “
Evidence for the Involvement of Hydroxyl Radicals in Nickel Mediated Enhancement of Lipid Peroxidation: Implications for Nickel Carcinogenesis
,”
Biochem. Biophys. Res. Commun.
,
147
(
3
), pp.
1276
1281
.
43.
Patel
,
M.
,
Ricardo
,
C. L. A.
,
Scardi
,
P.
, and
Aswath
,
P. B.
,
2012
, “
Morphology, Structure and Chemistry of Extracted Diesel Soot—Part I: Transmission Electron Microscopy, Raman Spectroscopy, X-Ray Photoelectron Spectroscopy and Synchrotron X-Ray Diffraction Study
,”
Tribol. Int.
,
52
, pp.
29
39
.
44.
Escribano
,
R.
,
Sloan
,
J.
,
Siddique
,
N.
,
Sze
,
N.
, and
Dudev
,
T.
,
2001
, “
Raman Spectroscopy of Carbon-Containing Particles
,”
Vib. Spectrosc.
,
26
(
2
), pp.
179
186
.
45.
Sadezky
,
A.
,
Muckenhuber
,
H.
,
Grothe
,
H.
,
Niessner
,
R.
, and
Pöschl
,
U.
,
2005
, “
Raman Microspectroscopy of Soot and Related Carbonaceous Materials: Spectral Analysis and Structural Information
,”
Carbon
,
43
(
8
), pp.
1731
1742
.
46.
Cuesta
,
A.
,
Dhamelincourt
,
P.
,
Laureyns
,
J.
,
Martinez-Alonso
,
A.
, and
Tascón
,
J. D.
,
1994
, “
Raman Microprobe Studies on Carbon Materials
,”
Carbon
,
32
(
8
), pp.
1523
1532
.
47.
Tuinstra
,
F.
, and
Koenig
,
J. L.
,
1970
, “
Raman Spectrum of Graphite
,”
J. Chem. Phys.
,
53
(
3
), pp.
1126
1130
.
48.
Bacsik
,
Z.
,
Mink
,
J.
, and
Keresztury
,
G.
,
2005
, “
FTIR Spectroscopy of the Atmosphere Part 2. Applications
,”
Appl. Spectrosc. Rev.
,
40
(
4
), pp.
327
390
.
49.
Burtscher
,
H.
,
1992
, “
Measurement and Characteristics of Combustion Aerosols With Special Consideration of Photoelectric Charging and Charging by Flame Ions
,”
J. Aerosol Sci.
,
23
(
6
), pp.
549
595
.
50.
Polidori
,
A.
,
Turpin
,
B. J.
,
Davidson
,
C. I.
,
Rodenburg
,
L. A.
, and
Maimone
,
F.
,
2008
, “
Organic PM 2.5: Fractionation by Polarity, FTIR Spectroscopy, and OM/OC Ratio for the Pittsburgh Aerosol
,”
Aerosol Sci. Technol.
,
42
(
3
), pp.
233
246
.
You do not currently have access to this content.