Power-to-gas to energy systems are of increasing interest for low carbon fuels production and as a low-cost grid-balancing solution for renewables penetration. However, such gas generation systems are typically focused on hydrogen production, which has compatibility issues with the existing natural gas pipeline infrastructures. This study presents a power-to-synthetic natural gas (SNG) plant design and a techno-economic analysis of its performance for producing SNG by reacting renewably generated hydrogen from low-temperature electrolysis with captured carbon dioxide. The study presents a “bulk” methanation process that is unique due to the high concentration of carbon oxides and hydrogen. Carbon dioxide, as the only carbon feedstock, has much different reaction characteristics than carbon monoxide. Thermodynamic and kinetic considerations of the methanation reaction are explored to design a system of multistaged reactors for the conversion of hydrogen and carbon dioxide to SNG. Heat recuperation from the methanation reaction is accomplished using organic Rankine cycle (ORC) units to generate electricity. The product SNG has a Wobbe index of 47.5 MJ/m3 and the overall plant efficiency (H2/CO2 to SNG) is shown to be 78.1% LHV (83.2% HHV). The nominal production cost for SNG is estimated at 132 $/MWh (38.8 $/MMBTU) with 3 $/kg hydrogen and a 65% capacity factor. At U.S. DOE target hydrogen production costs (2.2 $/kg), SNG cost is estimated to be as low as 97.6 $/MWh (28.6 $/MMBtu or 1.46 $/kgSNG).

References

References
1.
Eichman
,
J.
,
Harrison
,
K.
, and
Peters
,
M.
,
2014
, “
Novel Electrolyzer Applications: Providing More Than Just Hydrogen
,” National Renewable Energy Laboratory, Golden, CO, Technical Report, No.
NREL/TP-5400-61758
.
2.
Larson
,
E. D.
,
Jin
,
J.
, and
Celik
,
F. E.
,
2009
, “
Large-Scale Gasification-Based Coproduction of Fuels and Electricity From Switchgrass
,”
Biofuels Bioprod. Bioref.
,
3
, pp.
174
94
.
3.
Parker
,
N.
,
2004
, “
Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs. Institute of Transportation Studies
,” University of California-Davis, Davis, CA, Report No. UCD-ITS-RR-04-35.
4.
Mintz
,
M.
,
Folga
,
S.
,
Molburg
,
J.
, and
Gillette
,
J.
,
2002
, “
Cost of Some Hydrogen Fuel Infrastructure Options
,”
Argonne National Laboratory, Lemont, IL
.
5.
Melaina
,
M.
,
Antonia
,
O.
, and
Penev
,
M.
,
March, 2013
, “
Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-5600-51995
.
6.
Pivovar, B., Rustagi, N., Satyapal, S., 2018, “
Hydrogen at Scale, Key to a Clean, Economic, and Sustainable Energy System
,”
Interface
,
27
(1), pp. 47–52.
7.
Zakeri
,
B.
, and
Syri
,
S.
,
2015
, “
Electrical Energy Storage Systems: A Comparative Life Cycle Cost Analysis
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
569
596
.
8.
Auer
,
J.
, and
Keil
,
J.
,
2012
,
State-of-the-Art Electricity Storage Systems: Indispensable Elements of the Energy Revolution
,
Deutsche Bank AG, Frankfurt am Main
,
Germany
.
9.
Winkler-Goldstein
,
R.
, and
Rastetter
,
A.
,
2013
, “
Power to Gas: The Final Breakthrough for the Hydrogen Economy?
,”
Green
,
3
(
1
), pp. 69–78.
10.
Gahleitner
,
G.
,
2013
, “
Hydrogen From Renewable Electricity: An International Review of Power-to-Gas Pilot Plants for Stationary Applications
,”
Int. J. Hydrogen Energy
,
38
(
5
), pp.
2039
2061
.
11.
Pellow
,
M. A.
,
Emmott
,
C. J.
,
Barnhart
,
C. J.
, and
Benson
,
S. M.
,
2015
, “
Hydrogen or Batteries for Grid Storage? a Net Energy Analysis
,”
Energy Environ. Sci.
,
8
(
7
), p.
1938
.
12.
Hager
,
T.
,
2008
,
The Alchemy of Air
,
Broadway Books
,
New York
.
13.
Bui
,
M.
,
Adjiman
,
C. S.
,
Bardow
,
A.
,
Anthony
,
E . J.
,
Boston
,
A.
,
Brown
,
S.
,
Fennell
,
P. S.
,
Fuss
,
S.
,
Galindo
,
A.
,
Hackett
,
L. A.
,
Hallett
,
J. P.
,
Herzog
,
H. J.
,
Jackson
,
G.
,
Kemper
,
J.
,
Krevor
,
S.
,
Maitland
,
G. C.
,
Matuszewski
,
M.
,
Metcalfe
,
I. S.
,
Petit
,
C.
,
Puxty
,
G.
,
Reimer
,
J.
,
Reiner
,
D. M.
,
Rubin
,
E. S.
,
Scott
,
S. A.
,
Shah
,
N.
,
Smit
,
B.
,
Martin Trusler
,
J. P.
,
Webley
,
P.
,
Wilcox
,
J.
, and
Dowell
,
N. M.
,
2018
, “
Carbon Capture and Storage (CCS): The Way Forward
,”
Energy Environ. Sci.
,
11
, pp.
1062
1176
.
14.
Kertamus
,
N. G.
,
1978
, “
Combined Shift-Methanation Processes
,” a report prepared for the U.S. Department of Energy, by C. F. Braun & Co, Alhambra, CA, Technical Report No. FE-2240-97.
15.
Dirksen
,
H. A.
, and
Linden
,
H. R.
,
1963
, “
Pipeline Gas From Coal by Methanation of Synthesis Gas
,”
Inst. Gas Technol., Res. Bull.
, Vol. 31.
16.
Zahnstecher
,
L. W.
,
1984
, “
Coal Gasification Via the Lurgi Process
,” Topical Report Volume 1: Production of SNG, prepared for the U.S. DOE under Contract No.: DE-AC01082FE0508.
17.
Seglin
,
L.
,
Geosits
,
R.
,
Franko
,
B. R.
, and
Gruber
,
G.
,
1974
, “
Survey of Methanation Chemistry and Processes
,” in Methanation of Synthesis Gas, Advances in Chemistry Series, Vol. 146, L. Seglin, ed., American Chemistry Society, Washington, D.C.
18.
Panek
,
J. M.
, and
Grasser
,
J.
,
2006
, “
Practical Experience Gained During the First Twenty Years of Operation of the Great Plains Gasification Plant and Implications for Future Projects
,” U.S. DOE Office of Fossil Energy, Technical Report.
19.
Götz
,
M.
,
Lefebvre
,
J.
,
Mörs
,
F.
,
McDaniel Koch
,
A.
,
Graf
,
F.
,
Bajohr
,
S.
,
Reimert
,
R.
, and
Kolb
,
T.
,
2016
, “
Renewable Power-to-Gas: A Technological and Economic Review
,”
Renewable Energy
,
85
, pp.
1371
1390
.
20.
Buchholz
,
O. S.
,
van der Ham
,
A. G. J.
,
Veneman
,
R.
,
Brilman
,
D. W. F.
, and
Kersten
,
S. R. A.
,
2014
, “
Power-to-Gas: Storing Surplus Electrical Energy. A Design Study
,”
Energy Procedia
,
63
, pp.
7993
8009
.
21.
Vandewalle
,
J.
,
Bruninx
,
K.
, and
D'haeseleer
,
W.
,
2015
, “
Effects of Large-Scale Power to Gas Conversion on the Power, Gas and Carbon Sectors and Their Interactions
,”
Energy Convers. Manage.
,
94
, pp.
28
39
.
22.
Jensen
,
S. H.
,
Graves
,
C.
,
Mogensen
,
M.
,
Wendel
,
C.
,
Braun
,
R.
,
Hughes
,
G.
,
Gao
,
A.
, and
Barnett
,
S. A.
,
2015
, “
Large-Scale Electricity Storage Utilizing Reversible Solid Oxide Cells Combined With Underground Storage of CO2 and CH4
,”
Energy Environ. Sci.
,
8
, pp.
2471
2479
.
23.
Schaaf
,
T.
,
Gruenig
,
J.
,
Schuster
,
M. R.
,
Rothenfluh
,
T.
, and
Orth
,
A.
,
2014
, “
Methanation of CO2 - storage of renewable energy in a gas distribution system
,”
Energy, Sustainability, and Society
, Springer.
24.
Giglio
,
E.
,
Lanzini
,
A.
,
Santarelli
,
M.
, and
Leone
,
P.
,
2015
, “
Synthetic Natural Gas Via Integrated High-Temperature Electrolysis and Methanation: Part II—Economic Analysis
,”
J. Energy Storage
,
2
, pp.
64
79
.
25.
Giglio
,
E.
,
Lanzini
,
A.
,
Santarelli
,
M.
, and
Leone
,
P.
,
2015
, “
Synthetic Natural Gas Via Integrated High-Temperature Electrolysis and Methanation—Part I: Energy Performance
,”
J. Energy Storage
,
1
, pp.
22
37
.
26.
Ancona
,
M. A.
,
Antonioni
,
G.
,
Branchini
,
L.
,
De Pascale
,
A.
,
Melino
,
F.
,
Orlandini
,
V.
,
Antonucci
,
V.
, and
Ferraro
,
M.
,
2016
, “
Renewable Energy Storage System Based on a Power-to-Gas Conversion Process
,”
Energy Procedia
,
101
, pp.
854
861
.
27.
Stemberg
,
A.
, and
Bardow
,
A.
,
2015
, “
Power-to-What?—Environmental Assessment of Energy Storage Systems
,”
Energy Environ. Sci.
,
8
, p.
389
.
28.
Becker
,
W. L.
,
Braun
,
R. J.
,
Melaina
,
M.
, and
Penev
,
M.
,
2012
, “
Production of Fischer-Tropsch Liquid Fuels From High Temperature Solid Oxide Co-Electrolysis Units
,”
Energy
,
47
(
1
), pp.
99
115
.
29.
Schemme
,
S.
,
Samsun
,
R.
,
Peters
,
R.
, and
Stolten
,
D.
,
2017
, “
Power-to-Fuel as a Key to Sustainable Transport Systems—An Analysis of Diesel Fuels Produced From CO2 and Renewable Electricity
,”
Fuel
,
205
, pp.
198
221
.
30.
Wang W.
, and
Gong J.
, 2011, “
Methanation of carbon dioxide: an overview
,”
Front. Chem. Sci. Eng.
5
(1), pp. 2–10.
31.
Twygg
,
M.
,
1989
,
Catalyst Handbook
,
2nd ed.
, Wolfe Publishing Ltd., United Kingdom.
32.
Rostrup-Nielsen
,
J. R.
,
Pedersen
,
K.
, and
Sehested
,
J.
,
2007
, “
High Temperature Methanation Sintering and Structure Sensitivity
,”
Appl. Catal. A: General
,
330
, pp.
134
138
.
33.
Saletore
,
D. A.
, and
Thomson
,
W. J.
,
1977
, “
Methanation Reaction Rates for Recycle Reactor Compositions
,”
Ind. Eng. Chem. Process Des. Dev.
,
16
(
1
), pp. 70–75.
34.
Chlang
,
J. H.
, and
Hopper
,
J. R.
,
1983
, “
Kinetics of the Hydrogenation of Carbon Dioxide Over Supported Nickel
,”
Ind. Eng. Chem. Prod. Res.
,
22
(
2
), pp. 225–228.
35.
Lefebvre
,
J.
,
Götz
,
M.
,
Bajohr
,
S.
,
Reimert
,
R.
, and
Kolb
,
T.
,
2014
, “
Improvement of Three-Phase Methanation Reactor Performance for Steady-State and Transient Operation
,”
Fuel Proc. Technol.
,
132
, pp.
83
90
.
36.
Habazaki
,
H.
,
Yamasaki
,
M.
,
Zhang
,
B.-P.
,
Kawashima
,
A.
,
Kohno
,
S.
,
Takai
,
T.
, and
Hashimoto
,
K.
,
1998
, “
Co-Methanation of Carbon Monoxide and Carbon Dioxide on Supported Nickel and Cobalt Catalysts Prepared From Amorphous Alloys
,”
Applied Catalysis A: General
,
172
(1), pp. 131–140.
37.
Becker
,
W. L.
,
2011
, “
Design, Performance, and Economic Assessment of Renewable and Alternative Fuel Production Pathways
,” M.S. thesis, Colorado School of Mines, Golden, CO.
38.
Hoekman
,
S. K.
,
Broch
,
A.
,
Robbins
,
C.
, and
Purcell
,
R.
,
2010
, “
CO2 Recycling by Reaction With Renewably-Generated Hydrogen
,”
Int. J. Greenhouse Gas Control
,
4
(
1
), pp.
44
50
.
39.
Spath
,
P.
,
Aden
,
A.
,
Eggeman
,
T.
,
Ringer
,
M.
,
Wallace
,
B.
, and
Jechura
,
J.
,
2005
, “
Biomass to Hydrogen Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly-Heated Gasifier
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. TP-510-37408:13.
40.
Stone
,
J.
,
2010
, “UTC Power, personal communication, Industrial Quote for Organic Rankine Cycle Unit: Efficiency and Cost,” South Windsor, CT.
41.
Alie
,
C.
,
Backham
,
L.
,
Croiset
,
E.
, and
Douglas
,
P. L.
,
2005
, “
Simulation of CO2 Capture Using MEA Scrubbing: A Flowsheet Decomposition Method
,”
Energy Convers. Manage.
,
46
(
3
), pp.
475
487
.
42.
Nextant,
2009
, “Task 2: Detailed MDEA Process Analysis,” Prepared for the National Renewable Energy Laboratory, Golden, CO, NREL Task Order No. KAFT-8-882786-01.
43.
Ho
,
W.
, and
Sirkar
,
K.
,
1992
,
Membrane Handbook
,
Springer Publishing
,
New York
.
44.
Baker
,
R. W.
,
2000
,
Membrane Technology and Applications
,
McGraw-Hill
,
New York
.
45.
Kinay
,
A.
, and
Parrish
,
W.
,
2006
,
Fundamentals of Natural Gas Processing
,
Taylor and Francis Group, LLC
, Didcot, United Kingdom.
46.
Haeseldonckx
,
D.
, and
D'haeseleer
,
W.
,
2006
, “
The Use of the Natural-Gas Pipeline Infrastructure for Hydrogen Transport in a Changing Market Structure
,”
Int. J. Hydrogen Energy
,
32
(
10–11
), pp.
1381
1386
.
47.
Peters
,
M. S.
,
Timmerhaus
,
K. D.
, and
West
,
R. E.
,
2003
,
Plant Design and Economics for Chemical Engineers
,
5th ed.
,
McGraw-Hill
,
New York
.
48.
Helfrich, D.
, 2010, “
Sud-Chemie, Personal Communication, Industrial Quote for SNG1000 Methanation Catalyst Composition and Cost
,” Charlotte, NC.
49.
Newpoint Gas, LP, 2010, “
Amicalc™
,” Innovative Gas and Oil Solutions, Oklahoma City, OK, accessed June 2010, http://www.newpointgas.com/downloads.php
50.
Steward
,
D.
,
Ramsden
,
T.
, and
Zuboy
,
J.
, “H2A Production Model, 2008, Version 2 User Guide,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-560-43983.
51.
Rubin
,
E. S.
,
Chen
,
C.
, and
Rao
,
A. B.
,
2007
, “
Cost and Performance of Fossil Fuel Power Plants With CO2 Capture and Storage
,”
Energy Policy
,
35
(
9
), pp.
4444
4454
.
52.
U.S. Energy Information Administration
,
2018
, Annual Energy Outlook, Appendix A, Table A3, Washington, DC.
53.
U.S. DOE Hydrogen and Fuel Cells Program, 2010, “
Central and Forecourt Hydrogen Production Case Studies
,” Hydrogen & Fuel Cells Program, Washington, DC, accessed Sept. 20, 2018, http://www.hydrogen.energy.gov/h2a_analysis.html
54.
Hou
,
P.
,
Enevoldsen
,
P.
,
Eichman
,
J.
,
Hu
,
W.
,
Jacobson
,
M. Z.
, and
Chen
,
Z.
,
2017
, “
Optimizing Investments in Coupled Offshore Wind–Electrolytic Hydrogen Storage Systems in Denmark
,”
J. Power Sources
,
259
, pp.
186
197
.
You do not currently have access to this content.