This paper presents the results of a thermo-economic analysis of integrating solar tower (ST) with heat and power cogeneration plants that is progressively being installed to produce heat and electricity to operate absorption refrigeration systems or steam for industrial processes. The annual performance of an integrated solar-tower gas-turbine-cogeneration power plant (ISTGCPP) with different sizes of gas turbine and solar collector's area have been examined and presented. Thermoflex + PEACE software's were used to thermodynamically and economically assess different integration configurations of the ISTGCPP. The optimal integrated solar field size has been identified and the pertinent reduction in CO2 emissions due to integrating the ST system is estimated. For the considered cogeneration plant (that is required to produce 81.44 kg/s of steam at 394 °C and 45.88 bars), the study revealed that (ISTGCPP) with gas turbine of electric power generation capacity less than 50 MWe capacities have more economic feasibility for integrating solar energy. The levelized electricity cost (LEC) for the (ISTGCPP) varied between $0.067 and $0.069/kWh for gas turbine of electric power generation capacity less than 50 MWe. Moreover, the study demonstrated that (ISTGCPP) has more economic feasibility than a stand-alone ST power plant; the LEC for ISTGCPP is reduced by 50–60% relative to the stand-alone ST power plant. Moreover, a conceptual procedure to identify the optimal configuration of the ISTGCPP has been developed and presented in this paper.

References

References
1.
Gürtürk
,
M.
, and
Oztop
,
H. F.
,
2016
, “
Exergy Analysis of a Circulating Fluidized Bed Boiler Cogeneration Power Plant
,”
Energy Convers. Manage.
,
120
, pp.
346
357
.
2.
Shnaiderman
,
M.
, and
Keren
,
N.
,
2014
, “
Cogeneration Versus Natural Gas Steam Boiler: A Techno-Economic Model
,”
Appl. Energy
,
131
, pp.
128
138
.
3.
Karaali
,
R.
, and
Öztürk
,
İ. T.
,
2015
, “
Thermoeconomic Optimization of Gas Turbine Cogeneration Plants
,”
Energy
,
80
, pp.
474
485
.
4.
Jarre
,
M.
,
Noussan
,
M.
, and
Poggio
,
A.
,
2016
, “
Operational Analysis of Natural Gas Combined Cycle CHP Plants: Energy Performance and Pollutant Emissions
,”
Appl. Therm. Eng.
,
100
, pp.
304
314
.
5.
Şöhret
,
Y.
,
Açıkkalp
,
E.
,
Hepbasli
,
A.
, and
Karakoc
,
T. H.
,
2015
, “
Advanced Exergy Analysis of an Aircraft Gas Turbine Engine: Splitting Exergy Destructions Into Parts
,”
Energy
,
90
(2), pp.
1219
1228
.
6.
Ibrahim
,
T. K.
, and
Rahman
,
M. M.
,
2014
, “
Effect of Compression Ratio on the Performance of Different Strategies for the Gas Turbine
,”
Int. J. Automot. Mech. Eng.
,
9
(
1
), pp.
1747
1757
.
7.
Ibrahim
,
T. K.
, and
Rahman
,
M. M.
,
2015
, “
Optimum Performance Improvements of the Combined Cycle Based on an Intercooler–Reheated Gas Turbine
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
061601
.
8.
Koonsrisuk
,
A.
,
2013
, “
Comparison of Conventional Solar Chimney Power Plants and Sloped Solar Chimney Power Plants Using Second Law Analysis
,”
Sol. Energy
,
98
, pp.
78
84
.
9.
Solheimslid
,
T.
,
Harneshaug
,
H. K.
, and
Lümmen
,
N.
,
2015
, “
Calculation of First-Law and Second-Law-Efficiency of a Norwegian Combined Heat and Power Facility Driven by Municipal Waste Incineration—A Case Study
,”
Energy Convers. Manage.
,
95
, pp.
149
159
.
10.
Ball
,
R.
,
2015
, “
Using the Second Law First: Improving the Thermodynamic Efficiency of Carbon Dioxide Separation From Gas Streams in an Endex Calcium Looping System
,”
Appl. Therm. Eng.
,
74
, pp.
194
201
.
11.
Yunus
,
A. C. M. A. B.
,
2011
,
Thermodynamics an Engineering Approach
,
7th ed.
,
McGraw-Hill
,
New York
.
12.
Zhu
,
Y.
,
Zhai
,
R.
,
Peng
,
H.
, and
Yang
,
Y.
,
2016
, “
Exergy Destruction Analysis of Solar Tower Aided Coal-Fired Power Generation System Using Exergy and Advanced Exergetic Methods
,”
Appl. Therm. Eng.
,
108
, pp.
339
346
.
13.
Ibrahim
,
T. K.
,
Basrawi
,
F.
,
Awad
,
O. I.
,
Abdullah
,
A. N.
,
Najafi
,
G.
,
Mamat
,
R.
, and
Hagos
,
F. Y.
,
2017
, “
Thermal Performance of Gas Turbine Power Plant Based on Exergy Analysis
,”
Appl. Therm. Eng.
,
115
, pp.
977
985
.
14.
Avila-Marin
,
A. L.
,
Fernandez-Reche
,
J.
, and
Tellez
,
F. M.
,
2013
, “
Evaluation of the Potential of Central Receiver Solar Power Plants: Configuration, Optimization and Trends
,”
Appl. Energy
,
112
, pp.
274
288
.
15.
Behar
,
O.
,
Khellaf
,
A.
, and
Mohammedi
,
K.
,
2013
, “
A Review of Studies on Central Receiver Solar Thermal Power Plants
,”
Renewable Sustainable Energy Rev.
,
23
, pp.
12
39
.
16.
Lin
,
B.
, and
Ouyang
,
X.
,
2014
, “
Energy Demand in China: Comparison of Characteristics Between the U.S. and China in Rapid Urbanization Stage
,”
Energy Convers. Manage.
,
79
, pp.
128
139
.
17.
Boerema
,
N.
,
Morrison
,
G.
,
Taylor
,
R.
, and
Rosengarten
,
G.
,
2012
, “
Liquid Sodium Versus Hitec as a Heat Transfer Fluid in Solar Thermal Central Receiver Systems
,”
Sol. Energy
,
86
(
9
), pp.
2293
2305
.
18.
Baharoon
,
D. A.
,
Rahman
,
H. A.
,
Omar
,
W. Z. W.
, and
Fadhl
,
S. O.
,
2015
, “
Historical Development of Concentrating Solar Power Technologies to Generate Clean Electricity Efficiently—A Review
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
996
1027
.
19.
Dabwan
,
Y. N.
,
2013
, “
Development and Assessment of Solar-Assisted Gas Turbine Cogeneration Systems in Saudi Arabia
,” M.Sc. thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
20.
Behar
,
O.
,
Khellaf
,
A.
,
Mohammedi
,
K.
, and
Ait-Kaci
,
S.
,
2014
, “
A Review of Integrated Solar Combined Cycle System (ISCCS) With a Parabolic Trough Technology
,”
Renewable Sustainable Energy Rev.
,
39
pp.
223
250
.
21.
Jamel
,
M. S.
,
Abd Rahman
,
A.
, and
Shamsuddin
,
A. H.
,
2013
, “
Advances in the Integration of Solar Thermal Energy With Conventional and Non-Conventional Power Plants
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
71
81
.
22.
Alrobaei
,
H.
,
2008
, “
Novel Integrated Gas Turbine Solar Cogeneration Power Plant
,”
Desalination
,
220
(
1–3
), pp.
574
587
.
23.
Dersch
,
J.
,
Geyer
,
M.
,
Herrmann
,
U.
,
Jones
,
S. A.
,
Kelly
,
B.
,
Kistner
,
R.
,
Ortmanns
,
W.
,
Pitz-Paal
,
R.
, and
Price
,
H.
,
2004
, “
Trough Integration Into Power Plants—a Study on the Performance and Economy of Integrated Solar Combined Cycle Systems
,”
Energy
,
29
(
5–6
), pp.
947
959
.
24.
Montes
,
M.
,
Rovira
,
A.
,
Munoz
,
M.
, and
Martinez-Val
,
J.
,
2011
, “
Performance Analysis of an Integrated Solar Combined Cycle Using Direct Steam Generation in Parabolic Trough Collectors
,”
Appl. Energy
,
88
(
9
), pp.
3228
3238
.
25.
Raj
,
N. T.
,
Iniyan
,
S.
, and
Goic
,
R.
,
2011
, “
A Review of Renewable Energy Based Cogeneration Technologies
,”
Renewable Sustainable Energy Rev.
,
15
(
8
), pp.
3640
3648
.
26.
Ali
,
M.
,
Khan
,
S. A.
,
Sheikh
,
N. A.
,
Shehryar
,
M.
,
Ali
,
H. M.
, and
Rashid
,
T. U.
,
2017
, “
Performance Analysis of a Low Capacity Solar Tower Water Heating System in Climate of Pakistan
,”
Energy Build.
,
143
, pp.
84
99
.
27.
Popov
,
D.
, and
Borissova
,
A.
,
2017
, “
Innovative Configuration of a Hybrid Nuclear-Solar Tower Power Plant
,”
Energy
,
125
, pp.
736
746
.
28.
Srilakshmi
,
G.
,
Suresh
,
N. S.
,
Thirumalai
,
N. C.
, and
Ramaswamy
,
M. A.
,
2017
, “
Preliminary Design of Heliostat Field and Performance Analysis of Solar Tower Plants With Thermal Storage and Hybridisation
,”
Sustainable Energy Technol. Assess.
,
19
, pp.
102
113
.
29.
Hussain
,
C. M. I.
,
Norton
,
B.
, and
Duffy
,
A.
,
2017
, “
Technological Assessment of Different Solar-Biomass Systems for Hybrid Power Generation in Europe
,”
Renewable Sustainable Energy Rev.
,
68
, pp.
1115
1129
.
30.
Yamani
,
N.
,
Khellaf
,
A.
,
Mohammedi
,
K.
, and
Behar
,
O.
,
2017
, “
Assessment of Solar Thermal Tower Technology Under Algerian Climate
,”
Energy
,
126
, pp.
444
460
.
31.
Chacartegui
,
R.
,
Muñoz de Escalona
,
J. M.
,
Sánchez
,
D.
,
Monje
,
B.
, and
Sánchez
,
T.
,
2011
, “
Alternative Cycles Based on Carbon Dioxide for Central Receiver Solar Power Plants
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
872
879
.
32.
Iverson
,
B. D.
,
Conboy
,
T. M.
,
Pasch
,
J. J.
, and
Kruizenga
,
A. M.
,
2013
, “
Supercritical CO2 Brayton Cycles for Solar-Thermal Energy
,”
Appl. Energy
,
111
, pp.
957
970
.
33.
Al-Sulaiman
,
F. A.
, and
Atif
,
M.
,
2015
, “
Performance Comparison of Different Supercritical Carbon Dioxide Brayton Cycles Integrated With a Solar Power Tower
,”
Energy
,
82
, pp.
61
71
.
34.
Atif
,
M.
, and
Al-Sulaiman
,
F. A.
,
2015
, “
Optimization of Heliostat Field Layout in Solar Central Receiver Systems on Annual Basis Using Differential Evolution Algorithm
,”
Energy Convers. Manage.
,
95
, pp.
1
9
.
35.
Osorio
,
J. D.
,
Hovsapian
,
R.
, and
Ordonez
,
J. C.
,
2016
, “
Dynamic Analysis of Concentrated Solar Supercritical CO2-Based Power Generation Closed-Loop Cycle
,”
Appl. Therm. Eng.
,
93
, pp.
920
934
.
36.
AlZahrani
,
A. A.
, and
Dincer
,
I.
,
2016
, “
Design and Analysis of a Solar Tower Based Integrated System Using High Temperature Electrolyzer for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
41
(
19
), pp.
8042
8056
.
37.
Spelling
,
J.
,
Favrat
,
D.
,
Martin
,
A.
, and
Augsburger
,
G.
,
2012
, “
Thermoeconomic Optimization of a Combined-Cycle Solar Tower Power Plant
,”
Energy
,
41
(
1
), pp.
113
120
.
38.
Santos
,
M. J.
,
Merchán
,
R. P.
,
Medina
,
A.
, and
Calvo Hernández
,
A.
,
2016
, “
Seasonal Thermodynamic Prediction of the Performance of a Hybrid Solar Gas-Turbine Power Plant
,”
Energy Convers. Manage.
,
115
, pp.
89
102
.
39.
Zare
,
V.
, and
Hasanzadeh
,
M.
,
2016
, “
Energy and Exergy Analysis of a Closed Brayton Cycle-Based Combined Cycle for Solar Power Tower Plants
,”
Energy Convers. Manage.
,
128
, pp.
227
237
.
40.
Okoroigwe
,
E.
, and
Madhlopa
,
A.
,
2016
, “
An Integrated Combined Cycle System Driven by a Solar Tower: A Review
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
337
350
.
41.
Larrouturou
,
F.
,
Caliot
,
C.
, and
Flamant
,
G.
,
2016
, “
Influence of Receiver Surface Spectral Selectivity on the Solar-to-Electric Efficiency of a Solar Tower Power Plant
,”
Sol. Energy
,
130
, pp.
60
73
.
42.
Atif
,
M.
, and
Al-Sulaiman
,
F. A.
,
2017
, “
Energy and Exergy Analyses of Solar Tower Power Plant Driven Supercritical Carbon Dioxide Recompression Cycles for Six Different Locations
,”
Renewable Sustainable Energy Rev.
,
68
, pp.
153
167
.
43.
Wang
,
K.
,
He
,
Y.-L.
, and
Zhu
,
H.-H.
,
2017
, “
Integration Between Supercritical CO2 Brayton Cycles and Molten Salt Solar Power Towers: A Review and a Comprehensive Comparison of Different Cycle Layouts
,”
Appl. Energy
,
195
, pp.
819
836
.
44.
Mokheimer
,
E. M. A.
,
Dabwan
,
Y. N.
, and
Habib
,
M. A.
,
2017
, “
Optimal Integration of Solar Energy With Fossil Fuel Gas Turbine Cogeneration Plants Using Three Different CSP Technologies in Saudi Arabia
,”
Appl. Energy
,
185
(
2
), pp.
1268
1280
.
45.
Manente
,
G.
,
Rech
,
S.
, and
Lazzaretto
,
A.
,
2016
, “
Optimum Choice and Placement of Concentrating Solar Power Technologies in Integrated Solar Combined Cycle Systems
,”
Renewable Energy
,
96
, pp.
172
189
.
46.
Mokheimer
,
E. M. A.
,
Dabwan
,
Y. N.
,
Habib
,
M. A.
,
Said
,
S. A. M.
, and
Al-Sulaiman
,
F. A.
,
2015
, “
Development and Assessment of Integrating Parabolic Trough Collectors With Steam Generation Side of Gas Turbine Cogeneration Systems in Saudi Arabia
,”
Appl. Energy
,
141
, pp.
131
142
.
47.
Jeffs
,
E.
,
2003
, “
Thermoflow Integrates-THERMOFLEX and ST PRO With PEACE
,”
Turbomach. Int.
,
44
(
4
), pp.
20
23
.
48.
Anon, 2001, “
EDUCOGEN—The European Educational Tool on Cogeneration
,” 2nd ed., accessed May 23, 2018, https://www2.uned.es/experto-energia/EDUCOGEN_Tool.pdf
49.
Montes
,
M.
,
Abánades
,
A.
,
Martinez-Val
,
J.
, and
Valdés
,
M.
,
2009
, “
Solar Multiple Optimization for a Solar-Only Thermal Power Plant, Using Oil as Heat Transfer Fluid in the Parabolic Trough Collectors
,”
Sol. Energy
,
83
(
12
), pp.
2165
2176
.
50.
Eter
,
A. A.
,
2011
, “
Modeling and Optimization of a Hybrid Solar Combined Cycle (HYCS)
,” M.Sc. thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
51.
Schwarzbözl
,
P.
,
Buck
,
R.
,
Sugarmen
,
C.
,
Ring
,
A.
,
Crespo
,
M. J. M.
,
Altwegg
,
P.
, and
Enrile
,
J.
,
2006
, “
Solar Gas Turbine Systems: Design, Cost and Perspectives
,”
Sol. Energy
,
80
(
10
), pp.
1231
1240
.Vol. No.
52.
Sheu
,
E. J.
,
Mitsos
,
A.
,
Eter
,
A. A.
,
Mokheimer
,
E. M.
,
Habib
,
M. A.
, and
Al-Qutub
,
A.
,
2012
, “
A Review of Hybrid Solar Fossil Fuel Power Generation Systems and Performance Metrics
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
041006
.
53.
Li
,
H.
,
Marechal
,
F.
, and
Favrat
,
D.
,
2010
, “
Power and Cogeneration Technology Environomic Performance Typification in the Context of CO2 Abatement Part II: Combined Heat and Power Cogeneration
,”
Energy
,
35
(
8
), pp.
3517
3523
.
54.
Lončar
,
D.
,
Duić
,
N.
, and
Bogdan
,
Ž.
,
2009
, “
An Analysis of the Legal and Market Framework for the Cogeneration Sector in Croatia
,”
Energy
,
34
(
2
), pp.
134
143
.
55.
Lončar
,
D.
, and
Ridjan
,
I.
,
2012
, “
Medium Term Development Prospects of Cogeneration District Heating Systems in Transition Country–Croatian Case
,”
Energy
,
48
(
1
), pp.
32
39
.
56.
Horn
,
M.
,
Führing
,
H.
, and
Rheinländer
,
J.
,
2004
, “
Economic Analysis of Integrated Solar Combined Cycle Power Plants: A Sample Case: The Economic Feasibility of an ISCCS Power Plant in Egypt
,”
Energy
,
29
(
5–6
), pp.
935
945
.
57.
Mokheimer
,
E. M. A.
, and
Habib
,
M. A.
,
2012
, “
Development of Solar Gas Turbine Cogeneration Systems in Saudi Arabia
,” KFUPM, Dhahran, Saudi Arabia, DSR Project No. FT100022.
58.
Dabwan
,
Y. N.
, and
Mokheimer
,
E. M. A.
,
2017
, “
Optimal Integration of Linear Fresnel Reflector With Gas Turbine Cogeneration Power Plant
,”
Energy Convers. Manage.
,
148
, pp.
830
843
.
59.
Dolf Gielen,
2012
, “
Renewable Energy Technologies: Cost Analysis Series, Concentrating Solar Power
,”
Int. Renewable Energy Agency
,
1
(2/5), pp. 1–48.https://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-csp.pdf
This content is only available via PDF.
You do not currently have access to this content.