The rate-controlled constrained-equilibrium (RCCE), a model order reduction method, assumes that the nonequilibrium states of a system can be described by a sequence of constrained-equilibrium kinetically controlled by relatively a small number of constraints within acceptable accuracies. The full chemical composition at each constrained-equilibrium state is obtained by maximizing (or minimizing) the appropriate thermodynamic quantities, e.g., entropy (or Gibbs functions) subject to the instantaneous values of the constraints. Regardless of the nature of the kinetic constraints, RCCE always guarantees correct final equilibrium state. Ignition delay times measured in shock tube experiments with low initial temperatures are significantly shorter than the values obtained by constant volume models. Low initial temperatures and thus longer shock tube test times cause nonideal heat transfer and fluid flow effects such as boundary layer growth and shock wave attenuation to gradually increase the pressure (and simultaneously increase the temperature) before ignition. To account for these effects, in this paper, the RCCE prescribed enthalpy and pressure (prescribed h/p) model has been further developed and has been applied to methane shock tube ignition delay time simulation using GRI-Mech 3.0. Excellent agreement between RCCE predictions and shock tube experimental data was achieved.

References

References
1.
Smooke
,
M.
, and
Giovangigli
,
V.
,
1991
, “
Premixed and Nonpremixed Test Problem Results
,”
Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames
,
Springer
,
Berlin
, pp.
29
47
.
2.
Bodenstein
,
M.
, and
Lind
,
S.
,
1907
, “
Geschwindigkeit Der Bildung Des Bromwasserstoffs Aus Seinen Elementen
,”
Z. Für Phys. Chem.
,
57
(
1
), pp.
168
192
.
3.
Rein
,
M.
,
1992
, “
The Partial-Equilibrium Approximation in Reacting Flows
,”
Phys. Fluids A: Fluid Dyn.
,
4
(
5
), pp.
873
886
.
4.
Maas
,
U.
, and
Pope
,
S.
,
1992
, “
Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space
,”
Combust. Flame
,
88
(
3–4
), pp.
239
264
.
5.
Pope
,
S. B.
, and
Maas
,
U.
,
1993
, “
Simplifying Chemical Kinetics: Trajectory-Generated Low-Dimensional Manifolds
,” Mechanical and Aerospace Engineering Report, Ithaca, NY, Report
No. FDA 93--11
.https://tcg.mae.cornell.edu/pubs/Pope_Maas_93.pdf
6.
Nahvi
,
S.
,
Nabi
,
M.
, and
Janardhanan
,
S.
,
2012
, “
A Quasi-Linearisation Approach to Trajectory Based Methods for Nonlinear MOR
,”
International Conference on Modelling, Identification and Control
, Wuhan, China, June 24–26, pp. 217–222.
7.
Bykov
,
V.
, and
Maas
,
U.
,
2007
, “
The Extension of the ILDM Concept to Reaction–Diffusion Manifolds
,”
Combust. Theory Modell.
,
11
(
6
), pp.
839
862
.
8.
Bykov
,
V.
, and
Maas
,
U.
,
2009
, “
Problem Adapted Reduced Models Based on Reaction–Diffusion Manifolds (REDIMs)
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
561
568
.
9.
Lebiedz
,
D.
,
2004
, “
Computing Minimal Entropy Production Trajectories: An Approach to Model Reduction in Chemical Kinetics
,”
J. Chem. Phys.
,
120
(
15
), pp.
6890
6897
.
10.
Lam
,
S.
, and
Goussis
,
D.
,
1994
, “
The CSP Method for Simplifying Kinetics
,”
Int. J. Chem. Kinetics
,
26
(
4
), pp.
461
486
.
11.
Løvås
,
T.
,
2009
, “
Automatic Generation of Skeletal Mechanisms for Ignition Combustion Based on Level of Importance Analysis
,”
Combust. Flame
,
156
(
7
), pp.
1348
1358
.
12.
Schwer
,
D.
,
Lu
,
P.
, and
Green
,
W.
,
2003
, “
An Adaptive Chemistry Approach to Modeling Complex Kinetics in Reacting Flows
,”
Combust. Flame
,
133
(
4
), pp.
451
465
.
13.
Van Oijen
,
J.
, and
De Goey
,
L.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.
14.
Lu
,
T.
, and
Law
,
C.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.
15.
Keck
,
J.
, and
Gillespie
,
D.
,
1971
, “
Rate-Controlled Partial-Equilibrium Method for Treating Reacting Gas Mixtures
,”
Combust. Flame
,
17
(
2
), pp.
237
241
16.
Keck
,
J.
,
1990
, “
Rate-Controlled Constrained-Equilibrium Theory of Chemical Reactions in Complex Systems
,”
Prog. Energy Combust. Sci.
,
16
(
2
), pp.
125
154
.
17.
Law
,
R.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1989
, “
Rate-Controlled Constrained Equilibrium Calculation of Ignition Delay Times in Hydrogen-Oxygen Mixtures
,”
Symp. (Int.) Combust.
,
22
(
1
), pp.
1705
1713
.
18.
Ugarte
,
S.
,
Gao
,
Y.
, and
Metghalchi
,
M.
,
2005
, “
Application of the Maximum Entropy Principle in the Analysis of a Non-Equilibrium Chemically Reacting Mixture
,”
Int. J. Thermodyn.
,
8
(
1
), pp.
43
53
.
19.
Hamiroune
,
D.
,
Bishnu
,
P.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1998
, “
Rate-Controlled Constrained Equilibrium Method Using Constraint Potentials
,”
Combust. Theory Model.
,
2
(
1
), pp.
81
94
.
20.
Janbozorgi
,
M.
,
Gao
,
Y.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
2006
, “
Rate-Controlled Constrained-Equilibrium Calculations of Ethanol-Oxygen Mixture
,” ASME Paper No.
IMECE2006-15667
.
21.
Hadi
,
F.
, and
Sheikhi
,
M.
,
2016
, “
A Comparison of Constraint and Constraint Potential Forms of the Rate-Controlled Constraint-Equilibrium Method
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022202
.
22.
Hadi
,
F.
,
Janbozorgi
,
M.
,
Sheikhi
,
M. R. H.
, and
Metghalchi
,
H.
,
2016
, “
A Study of Interactions Between Mixing and Chemical Reaction Using the Rate-Controlled Constrained-Equilibrium Method
,”
J. Nonequilibrium Thermodyn.
,
41
(
4
), pp.
257
278
.
23.
Bishnu
,
P. S.
,
Hamiroune
,
D.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1997
, “
Constrained-Equilibrium Calculations for Chemical Systems Subject to Generalized Linear Constraints Using the NASA and STANJAN Equilibrium Programs
,”
Combust. Theory Modell.
,
1
(
3
), pp.
295
312
.
24.
Safari
,
M.
,
Hadi
,
F.
, and
Sheikhi
,
M.
,
2014
, “
Progress in the Prediction of Entropy Generation in Turbulent Reacting Flows Using Large Eddy Simulation
,”
Entropy
,
16
(
10
), pp.
5159
5177
.
25.
Sheikhi
,
M.
,
Safari
,
M.
, and
Hadi
,
F.
,
2015
, “
Entropy Filtered Density Function for Large Eddy Simulation of Turbulent Flows
,”
AIAA J.
,
53
(
9
), pp.
2571
2587
.
26.
Beretta
,
G. P.
,
Keck
,
J. C.
,
Janbozorgi
,
M.
, and
Metghalchi
,
M.
,
2012
, “
The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics
,”
Entropy
,
14
(
2
), pp.
92
130
.
27.
Bishnu
,
P.
,
Hamiroune
,
D.
, and
Metghalchi
,
M.
,
2001
, “
Development of Constrained Equilibrium Codes and Their Applications in Nonequilibrium Thermodynamics
,”
ASME J. Energy Resour. Technol.
,
123
(
3
), pp.
214
220
.
28.
Beretta
,
G.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Degree of Disequilibrium Analysis for Automatic Selection of Kinetic Constraints in the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
168
, pp.
342
364
.
29.
Yousefian
,
V.
,
1998
, “
A Rate-Controlled Constrained-Equilibrium Thermochemistry Algorithm for Complex Reacting Systems
,”
Combust. Flame
,
115
(
1–2
), pp.
66
80
.
30.
Janbozorgi
,
M.
, and
Metghalchi
,
M.
,
2012
, “
Rate-Controlled Constrained-Equilibrium Modeling of H/O Reacting Nozzle Flow
,”
J. Propul. Power
,
28
(
4
), pp.
677
684
.
31.
Janbozorgi
,
M.
,
Ugarte
,
S.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
2009
, “
Combustion Modeling of Mono-Carbon Fuels Using the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
156
(
10
), pp.
1871
1885
.
32.
Nicolas
,
G.
, and
Metghalchi
,
H.
,
2016
, “
Development of the Rate-Controlled Constrained-Equilibrium Method for Modeling of Ethanol Combustion
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p. 022205.
33.
Parsinejad
,
F.
,
Keck
,
J.
, and
Metghalchi
,
H.
,
2007
, “
On the Location of Flame Edge in Shadowgraph Pictures of Spherical Flames: A Theoretical and Experimental Study
,”
Exp. Fluids
,
43
(
6
), pp.
887
894
.
34.
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2009
, “
Rate-Controlled Constrained-Equilibrium Theory Applied to the Expansion of Combustion Products in the Power Stroke of an Internal Combustion Engine
,”
Int. J. Thermodyn.
,
12
(
1
), pp.
44
50
.http://dergipark.gov.tr/download/article-file/65751
35.
Hadi
,
F.
,
Yu
,
G.
, and
Metghalchi
,
H.
,
2018
, “
Fundamentals of Rate-Controlled Constrained-Equilibrium Method
,”
Energy for Propulsion
,
Springer
,
Singapore
, pp.
237
266
.
36.
Nicolas
,
G.
, and
Metghalchi
,
H.
,
2015
, “
Comparison Between RCCE and Shock Tube Ignition Delay Times at Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062203
.
37.
Cadman
,
P.
,
Thomas
,
G.
, and
Butler
,
P.
,
2000
, “
The Auto-Ignition of Propane at Intermediate Temperatures and High Pressures
,”
Phys. Chem. Chem. Phys.
,
2
(
23
), pp.
5411
5419
.
38.
Davis
,
S.
,
Joshi
,
A.
,
Wang
,
H.
, and
Egolfopoulos
,
F.
,
2005
, “
An Optimized Kinetic Model of H2/CO Combustion
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1283
1292
.
39.
Chaos
,
M.
, and
Dryer
,
F.
,
2010
, “
Chemical-Kinetic Modeling of Ignition Delay: Considerations in Interpreting Shock Tube Data
,”
Int. J. Chem. Kinet.
,
42
(
3
), pp.
143
150
.
40.
Li
,
H.
,
Owens
,
Z.
,
Davidson
,
D.
, and
Hanson
,
R.
,
2008
, “
A Simple Reactive Gasdynamic Model for the Computation of Gas Temperature and Species Concentrations Behind Reflected Shock Waves
,”
Int. J. Chem. Kinet.
,
40
(
4
), pp.
189
198
.
41.
Huang
,
J.
,
Hill
,
P.
,
Bushe
,
W.
, and
Munshi
,
S.
,
2004
, “
Shock-Tube Study of Methane Ignition Under Engine-Relevant Conditions: Experiments and Modeling
,”
Combust. Flame
,
136
(
1–2
), pp.
25
42
.
42.
Burke
,
U.
,
Somers
,
K.
,
O'Toole
,
P.
,
Zinner
,
C.
,
Marquet
,
N.
,
Bourque
,
G.
,
Petersen
,
E.
,
Metcalfe
,
W.
,
Serinyel
,
Z.
, and
Curran
,
H.
,
2015
, “
An Ignition Delay and Kinetic Modeling Study of Methane, Dimethyl Ether, and Their Mixtures at High Pressures
,”
Combust. Flame
,
162
(
2
), pp.
315
330
.
You do not currently have access to this content.