In this study, new and pragmatic interfacial tension (IFT) correlations for n-alkane–water and n-alkane–CO2 systems are developed based on the mutual solubility of the corresponding binary systems and/or density in a pressure range of 0.1–140.0 MPa and temperature range of 283.2–473.2 K. In addition to being more accurate (i.e., the absolute average relative deviation (AARD) is 1.96% for alkane–water systems, while the AARDs for alkane–CO2 systems are 8.52% and 25.40% in the IFT range of >5.0 mN/m and 0.1–5.0 mN/m, respectively) than either the existing correlations or the parachor model (the AARDs for alkane–CO2 systems are 12.78% and 35.15% in the IFT range of >5.0 mN/m and 0.1–5.0 mN/m, respectively), such correlations can be applied to the corresponding ternary systems for an accurate IFT prediction without any mixing rule. Both a higher mutual solubility and a lower density difference between two phases involved can lead to a lower IFT, while pressure and temperature exert effects on IFT mainly through regulating the mutual solubility/density. Without taking effects of mutual solubility into account, the widely used parachor model in chemical and petroleum engineering fails to predict the IFT for CO2/methane–water pair and n-alkane–water pairs, though it yields a rough estimate for the CO2–water and methane–water pair below the CO2 and methane critical pressures of 7.38 and 4.59 MPa, respectively. However, the parachor model at least considers the effects of solubility in the alkane-rich phase to make it much accurate for n-alkane–CO2 systems. For n-alkane–CO2 pairs, the correlations developed in this work are found to be much less sensitive to the liquid density than the parachor model, being more convenient for practical use. In addition, all the IFTs for the CO2–water pair, methane–water pair, and alkane–CO2 pair can be regressed as a function of density difference of a gas–liquid system with a high accuracy at pressures lower than the critical pressures of either CO2 or methane.

References

References
1.
Yang
,
D.
, and
Gu
,
Y.
,
2003
, “Interfacial Phenomena of the Oil-Fluid-Rock Systems in Carbon Dioxide Flooding Reservoirs,”
Recent Developments in Colloids & Interface Research
, Vol.
1
,
S. G.
Pandalai
, ed.,
Transworld Research Network
, Trivandrum,
Kerala, India
, pp.
115
127
.
2.
Yang
,
D.
,
Tontiwachwuthikul
,
P.
, and
Gu
,
Y.
,
2006
, “
Dynamic Interfacial Tension Method for Measuring the Gas Diffusion Coefficient and the Interface Mass Transfer Coefficient in a Liquid
,”
Ind. Eng. Chem. Res.
,
45
(
14
), pp.
4999
5008
.
3.
Yang
,
D.
,
Song
,
C.
,
Zhang
,
J.
,
Zhang
,
G.
,
Ji
,
Y.
, and
Gao
,
J.
,
2015
, “
Performance Evaluation of Injectivity for Water-Alternating-CO2 Processes in Tight Oil Formations
,”
Fuel
,
139
, pp.
292
300
.
4.
Alavian
,
S. A.
, and
Whitson
,
C. H.
,
2011
, “
Numerical Modeling CO2 Injection in a Fractured Chalk Experiment
,”
J. Pet. Sci. Eng.
,
77
(
2
), pp.
172
182
.
5.
Li
,
H.
,
Yang
,
D.
, and
Tontiwachwuthikul
,
P.
,
2012
, “
Experimental and Theoretical Determination of Equilibrium Interfacial Tension for the Solvent(s)-CO2-Heavy Oil Systems
,”
Energy Fuels
,
26
(
3
), pp.
1776
1786
.
6.
Meybodi
,
M. K.
,
Daryasafar
,
A.
, and
Karimi
,
M.
,
2016
, “
Determination of Hydrocarbon-Water Interfacial Tension Using a New Empirical Correlation
,”
Fluid Phase Equilib.
,
415
, pp.
42
50
.
7.
Shang
,
Q.
,
Xia
,
S.
,
Cui
,
G.
,
Tang
,
B.
, and
Ma
,
P.
,
2017
, “
Measurement and Correlation of the Interfacial Tension for Paraffin + CO2 and (CO2 + N2) Mixture Gas at Elevated Temperatures and Pressures
,”
Fluid Phase Equilib.
,
439
, pp.
18
23
.
8.
Chen
,
Z.
, and
Yang
,
D.
,
2018
, “
Prediction of Equilibrium Interfacial Tension Between CO2 and Water Based on Mutual Solubility
,”
Ind. Eng. Chem. Res.
,
57
(
26
), pp.
8740
8749
.
9.
Fan
,
Z.
,
Yang
,
D.
,
Chai
,
D.
, and
Li
,
X.
,
2018
, “
Estimation of Relative Permeability and Capillary Pressure for PUNQ-S3 Model Using a Modified Iterative Ensemble Smoother
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022901
.
10.
Ding
,
Y.
,
Zheng
,
S.
,
Meng
,
X.
, and
Yang
,
D.
,
2019
, “
Low Salinity Hot Water Injection with Addition of Nanoparticles for Enhancing Heavy Oil Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072904
.
11.
McCaffery
,
F. G.
,
1972
, “
Measurement of Interfacial Tensions and Contact Angles at High Temperature and Pressure
,”
J. Can. Pet. Tech.
,
11
(
3
), pp.
26
32
.
12.
Yang
,
D.
, and
Gu
,
Y.
,
2004
, “
Interfacial Interactions of Crude Oil-Brine-CO2 Systems Under Reservoir Conditions
,”
Presented at the SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 26–29
, Paper No. SPE 90198-MS.
13.
Yang
,
D.
,
Tontiwachwuthikul
,
P.
, and
Gu
,
Y.
,
2005
, “
Interfacial Tensions of the Crude Oil + Reservoir Brine + CO2 Systems at Pressures up to 31 MPa and Temperatures of 27 °C and 58 °C
,”
J. Chem. Eng. Data
,
50
(
4
), pp.
1242
1249
.
14.
Yang
,
D.
, and
Gu
,
Y.
,
2004
, “
Visualization of Interfacial Interactions of Crude Oil-CO2 Systems Under Reservoir Conditions
,”
Presented at the 14th SPE/DOE Symposium on Improved Oil Recovery
,
Tulsa, OK
,
Apr. 17–21
, Paper No. SPE 89366-MS.
15.
Yang
,
D.
, and
Gu
,
Y.
,
2005
, “
Interfacial Interactions Between Crude Oil and CO2 under Reservoir Conditions
,”
Pet. Sci. Tech.
,
23
(
9
), pp.
1099
1112
.
16.
Yang
,
D.
, and
Gu
,
Y.
,
2008
, “
Determination of Diffusion Coefficients and Interface Mass-Transfer Coefficients of the Crude Oil−CO2 System by Analysis of the Dynamic and Equilibrium Interfacial Tensions
,”
Ind. Eng. Chem. Res.
,
47
(
15
), pp.
5447
5455
.
17.
Jaeger
,
P. T.
, and
Eggers
,
R.
,
2012
, “
Interfacial Properties at Elevated Pressures in Reservoir Systems Containing Compressed or Supercritical Carbon Dioxide
,”
J. Supercrit. Fluids
,
66
, pp.
88
85
.
18.
Yang
,
D.
,
Tontiwachwuthikul
,
P.
, and
Gu
,
Y.
,
2005
, “
Interfacial Interactions Between Reservoir Brine and CO2 at High Pressures and Elevated Temperatures
,”
Energy Fuels
,
19
(
1
), pp.
216
223
.
19.
Yang
,
D.
,
Tontiwachwuthikul
,
P.
, and
Gu
,
Y.
,
2005
, “
Interfacial Tension Phenomenon and Mass Transfer Process in the Reservoir Brine-CO2 System at High Pressures and Elevated Temperatures
,”
Presented at the International Green Energy Conference (IGEC-1)
,
Waterloo, ON
,
June 12–16
, Paper No. IGEC-1-090.
20.
Longeron
,
D. G.
,
1980
, “
Influence of Very Low Interfacial Tensions on Relative Permeability
,”
SPE J.
,
20
(
5
), pp.
391
401
.
21.
Asar
,
H.
, and
Handy
,
L. L.
,
1988
, “
Influence of Interfacial Tension on Gas/Oil Relative Permeability in a Gas-Condensate System
,”
SPE Res. Eng.
,
3
(
1
), pp.
257
264
.
22.
Blunt
,
M. J.
,
2000
, “
An Empirical Model for Three-Phase Relative Permeability
,”
SPE J.
,
5
(
4
), pp.
435
445
.
23.
Karimaie
,
H.
, and
Torsæter
,
O.
,
2010
, “
Low IFT Gas-Oil Gravity Drainage in Fractured Carbonate Porous Media
,”
J. Pet. Sci. Eng.
,
70
(
1–2
), pp.
67
73
.
24.
Chen
,
Z.
,
Zhao
,
X.
,
Wang
,
Z.
, and
Fu
,
M.
,
2015
, “
A Comparative Study of Inorganic Alkaline/Polymer Flooding and Organic Alkaline/Polymer Flooding for Enhanced Heavy Oil Recovery
,”
Colloid Surf. A: Physicochem. Eng. Asp.
,
469
, pp.
150
157
.
25.
Chen
,
Z.
, and
Zhao
,
X.
,
2015
, “
Enhancing Heavy-Oil Recovery by Using Middle Carbon Alcohol-Enhanced Waterflooding, Surfactant Flooding, and Foam Flooding
,”
Energy Fuels
,
29
(
4
), pp.
2153
2161
.
26.
Haniff
,
M. S.
, and
Pearce
,
A. J.
,
1990
, “
Measuring Interfacial Tensions in a Gas-Condensate System with a Laser-Light-Scattering Technique
,”
SPE Res. Eng.
,
5
(
4
), pp.
589
594
.
27.
Cumicheo
,
C.
,
Cartes
,
M.
,
Segura
,
H.
,
Müller
,
E. A.
, and
Mejía
,
A.
,
2014
, “
High-Pressure Densities and Interfacial Tensions of Binary Systems Containing Carbon Dioxide + n-Alkanes: (n-Dodecane, n-Tridecane, n-Tetradecane)
,”
Fluid Phase Equilib.
,
380
, pp.
390
392
.
28.
Liang
,
X.
,
Michelsen
,
M. L.
, and
Kontogeorgis
,
G. M.
,
2016
, “
A Density Gradient Theory Based Method for Surface Tension Calculations
,”
Fluid Phase Equilib.
,
428
, pp.
153
163
.
29.
Mairhofer
,
J.
, and
Gross
,
J.
,
2018
, “
Modeling Properties of the One-Dimensional Vapor-Liquid Interface: Application of Classical Density Functional and Density Gradient Theory
,”
Fluid Phase Equilib.
,
458
, pp.
243
252
.
30.
Almeida
,
B. S.
, and
Telo da Gama
,
M. M.
,
1989
, “
Surface Tension of Simple Mixtures: Comparison Between Theory and Experiment
,”
J. Phys. Chem.
,
93
(
10
), pp.
4132
4138
.
31.
Pereira
,
L. M. C.
,
Chapoy
,
A.
,
Burgass
,
R.
, and
Tohidi
,
B.
,
2016
, “
Measurement and Modelling of High Pressure Density and Interfacial Tension of (Gas + n-Alkane) Binary Mixtures
,”
J. Chem. Thermodyn.
,
97
, pp.
55
69
.
32.
Zuo
,
Y.-X.
, and
Stenby
,
E. H.
,
1998
, “
Prediction of Interfacial Tensions of Reservoir Crude Oil and Gas Condensate Systems
,”
SPE J.
,
3
(
2
), pp.
134
145
.
33.
Ayatollahi
,
S.
,
Hemmati-Sarapardeh
,
A.
,
Roham
,
M.
, and
Hajirezaie
,
S.
,
2016
, “
A Rigorous Approach for Determining Interfacial Tension and Minimum Miscibility Pressure in Paraffin-CO2 Systems: Application to Gas Injection Processes
,”
J. Taiwan Inst. Chem. Eng.
,
63
, pp.
107
115
.
34.
Hemmati-Sarapardeh
,
A.
, and
Mohagheghian
,
E.
,
2017
, “
Modeling Interfacial Tension and Minimum Miscibility Pressure in Paraffin-Nitrogen Systems: Application to Gas Injection Processes
,”
Fuel
,
205
, pp.
80
89
.
35.
Ameli
,
F.
,
Hemmati-Sarapardeh
,
A.
,
Schaffie
,
M.
,
Husein
,
M. M.
, and
Shamshirband
,
S.
,
2018
, “
Modeling Interfacial Tension in N2/n-Alkane Systems Using Corresponding State Theory: Application to Gas Injection Processes
,”
Fuel
,
222
, pp.
779
791
.
36.
Liu
,
Y.
,
Li
,
H.
, and
Okuno
,
R.
,
2016
, “
Measurements and Modeling of Interfacial Tension for CO2/CH4/Brine Systems under Reservoir Conditions
,”
Ind. Eng. Chem. Res.
,
55
(
48
), pp.
12358
12375
.
37.
Sugden
,
S.
,
1921
, “
The Determination of Surface Tension From the Rise in Capillary Tubes
,”
J. Chem. Soc. Trans.
,
119
, pp.
1483
1492
.
38.
Weinaug
,
C. F.
, and
Katz
,
D. L.
,
1943
, “
Surface Tension of Methane-Propane Mixtures
,”
Ind. Eng. Chem.
,
35
(
2
), pp.
239
246
.
39.
Huygens
,
R. J. M.
,
Ronde
,
H.
, and
Hagoort
,
J.
,
1996
, “
Interfacial Tension of Nitrogen/Volatile Oil Systems
,”
SPE J.
,
1
(
2
), pp.
125
132
.
40.
Danesh
,
A.
,
1998
, “
PVT and Phase Behaviour of Petroleum Reservoir Fluids
,” Ph.D. dissertation,
Herriot Watt University
,
Edinburgh, Scotland
.
41.
Firoozabadi
,
A.
, and
Ramey
,
H. J.
, Jr.
1988
, “
Surface Tension of Water-Hydrocarbon Systems at Reservoir Conditions
,”
J. Can. Pet. Tech.
,
27
(
3
), pp.
41
48
.
42.
Bahramian
,
A.
,
Danesh
,
A.
,
Gozalpour
,
F.
,
Tohidi
,
B.
, and
Todd
,
A. C.
,
2007
, “
Vapor-liquid Interfacial Tension of Water and Hydrocarbon Mixture at High Pressure and High Temperature Conditions
,”
Fluid Phase Equilib.
,
252
(
1–2
), pp.
66
73
.
43.
Bahramian
,
A.
,
2009
, “
Mutual Solubility-Interfacial Tension Relationship in Aqueous Binary and Ternary Hydrocarbon Systems
,”
Fluid Phase Equilib.
,
285
(
1–2
), pp.
24
29
.
44.
Backes
,
H. M.
,
Ma
,
J. J.
,
Bender
,
E.
, and
Maurer
,
G.
,
1990
, “
Interfacial Tensions in Binary and Ternary Liquid-Liquid Systems
,”
Chem. Eng. Sci.
,
45
(
1
), pp.
275
286
.
45.
Bennion
,
D. B.
, and
Bachu
,
S.
,
2008
, “
A Correlation of the Interfacial Tension Between Supercritical Phase CO2 and Equilibrium Brines as a Function of Salinity, Temperature and Pressure
,”
Presented at the SPE Annual Technical Conference and Exhibition
,
Denver, CO
,
Sept. 21–24
, Paper No. SPE 114479-MS.
46.
Kashefi
,
K.
,
2012
, “
Measurement and Modelling of Interfacial Tension and Viscosity of Reservoir Fluids
,”
Ph.D. dissertation
,
Heriot-Watt University
,
Edinburgh, Scotland
.
47.
Chen
,
Z.
, and
Yang
,
D.
,
2019
, “
Correlation/Estimation of Equilibrium Interfacial Tension for Methane/CO2-Water/Brine Systems Based on Mutual Solubility
,”
Fluid Phase Equilib.
,
483
, pp.
197
208
.
48.
Wiegand
,
G.
, and
Franck
,
E. U.
,
1994
, “
Interfacial Tension Between Water and Non-Polar Fluids up to 473 K and 2800 bar
,”
Ber. Bunsenges. Phys. Chem.
,
98
(
6
), pp.
809
817
.
49.
Cai
,
B.
,
Yang
,
J.
, and
Guo
,
T.
,
1996
, “
Interfacial Tension of Hydrocarbon + Water/Brine Systems Under High Pressure
,”
J. Chem. Eng. Data
,
41
(
3
), pp.
493
496
.
50.
Zeppieri
,
S.
,
Rodríguez
,
J.
, and
López de Ramos
,
A. L.
,
2001
, “
Interfacial Tension of Alkane + Water Systems
,”
J. Chem. Eng. Data
,
46
(
5
), pp.
1086
1088
.
51.
Michaels
,
A. S.
, and
Hauser
,
E. A.
,
1951
, “
Interfacial Tension at Elevated Pressure and Temperature. II
,”
J. Phys. Chem.
,
55
(
3
), pp.
408
421
.
52.
Harley
,
Y.
, and
Jennings
,
J. R.
,
1967
, “
The Effect of Temperature and Pressure on the Interfacial Tension of Benzene-Water and Normal Decane-Water
,”
J. Colloid. Interf. Sci.
,
24
(
3
), pp.
323
329
.
53.
Gasem
,
K. A. M.
,
Dickson
,
K. B.
,
Dulcamara
,
P. B.
,
Nagarajan
,
N.
, and
Robinson
,
R. L.
, Jr.
1989
, “
Equilibrium Phase Compositions, Phase Densities, and Interfacial Tensions for CO2 + Hydrocarbon Systems. 5. CO2 + n-Tetradecane
,”
J. Chem. Eng. Data
,
34
(
2
), pp.
191
195
.
54.
Georgiadis
,
A.
,
Llovell
,
F.
,
Bismarck
,
A.
,
Blas
,
F. J.
,
Galindo
,
A.
,
Maitland
,
G. C.
,
Trusler
,
J. P. M.
, and
Jackson
,
G.
,
2010
, “
Interfacial Tension Measurements and Modelling of (Carbon Dioxide + n-Alkane) and (Carbon Dioxide + Water) Binary Mixtures at Elevated Pressures and Temperatures
,”
J. Supercrit. Fluids
,
55
(
2
), pp.
743
754
.
55.
Hsu
,
J. J.-C.
,
Nagarajan
,
N.
, and
Robinson
,
R. L.
, Jr.
1985
, “
Equilibrium Phase Compositions, Phase Densities, and Interfacial Tensions for CO2 + Hydrocarbon Systems. 1. CO2 + n-Butane
,”
J. Chem. Eng. Data
,
30
(
4
), pp.
485
491
.
56.
Jaeger
,
P. T.
,
Alotaibi
,
M. B.
, and
Nasr-El-Din
,
H. A.
,
2010
, “
Influence of Compressed Carbon Dioxide on the Capillarity of the Gas-Crude Oil-Reservoir Water System
,”
J. Chem. Eng. Data
,
55
(
11
), pp.
5246
5251
.
57.
Li
,
N.
,
Zhang
,
C.
,
Ma
,
Q.
,
Jiang
,
L.
,
Xu
,
Y.
,
Chen
,
G.
,
Sun
,
C.
, and
Yang
,
L.
,
2017
, “
Interfacial Tension Measurement and Calculation of (Carbon Dioxide + n-Alkane) Binary Mixtures
,”
J. Chem. Eng. Data
,
62
(
9
), pp.
2861
2871
.
58.
Mejía
,
A.
,
Cartes
,
M.
,
Segura
,
H.
, and
Müller
,
E. A.
,
2014
, “
Use of Equations of State and Coarse Grained Simulations to Complement Experiments: Describing the Interfacial Properties of Carbon Dioxide + Decane and Carbon Dioxide + Eicosane Mixtures
,”
J. Chem. Eng. Data
,
59
(
10
), pp.
2928
2941
.
59.
Nagarajan
,
N.
, and
Robinson
,
R. L.
, Jr.
1986
, “
Equilibrium Phase Compositions, Phase Densities, and Interfacial Tensions for CO2 + Hydrocarbon Systems. 2. CO2 + n-Decane
,”
J. Chem. Eng. Data
,
31
(
2
), pp.
168
171
.
60.
Nagarajan
,
N.
,
Gasem
,
K. A. M.
, and
Robinson
,
R. L.
, Jr.
1990
, “
Equilibrium Phase Compositions, Phase Densities, and Interfacial Tensions for CO2 + Hydrocarbon Systems. 6. CO2 + n-Butane + n-Decane
,”
J. Chem. Eng. Data
,
35
(
3
), pp.
228
231
.
61.
Yang
,
Z.
,
Li
,
M.
,
Peng
,
B.
,
Lin
,
M.
,
Dong
,
Z.
, and
Ling
,
Y.
,
2014
, “
Interfacial Tension of CO2 and Organic Liquid Under High Pressure and Temperature
,”
Chinese J. Chem. Eng.
,
22
(
11–12
), pp.
1302
1306
.
62.
Zolghadr
,
A.
,
Escrochi
,
M.
, and
Ayatollahi
,
S.
,
2013
, “
Temperature and Composition Effect on CO2 Miscibility by Interfacial Tension Measurement
,”
J. Chem. Eng. Data
,
58
(
5
), pp.
1168
1175
.
63.
Niño Amézquita
,
O. G.
,
Endersa
,
S.
,
Jaeger
,
P. T.
, and
Eggers
,
R.
,
2010
, “
Interfacial Properties of Mixtures Containing Supercritical Gases
,”
J. Supercrit. Fluids
,
55
(
2
), pp.
724
734
.
64.
Peng
,
D. Y.
, and
Robinson
,
D. B.
,
1976
, “
A New-Constant Equation of State
,”
Ind. Eng. Chem. Fund.
,
15
(
1
), pp.
59
64
.
65.
Shi
,
Y.
, and
Yang
,
D.
,
2016
, “
Quantification of a Single Gas Bubble Growth in Solvent(s)-CO2-Heavy Oil Systems with Consideration of Multicomponent Diffusion Under Non-Equilibrium Conditions
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022908
.
66.
Shi
,
Y.
, and
Yang
,
D.
,
2017
, “
Experimental and Theoretical Quantification of Nonequilibrium Phase Behaviour and Physical Properties of Foamy Oil Under Reservoir Conditions
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062902
.
67.
Zheng
,
S.
, and
Yang
,
D.
,
2016
, “
Experimental and Theoretical Determination of Diffusion Coefficients of CO2-Heavy Oil Systems by Coupling Heat and Mass Transfer
,”
J. Energy Resour. Technol.
,
139
(
2
), p.
022901
.
68.
Chen
,
Z.
, and
Yang
,
D.
,
2017
, “
Optimization of the Reduced Temperature Associated with Peng-Robinson Equation of State and Soave-Redlich-Kwong Equation of State to Improve Vapor Pressure Prediction for Heavy Hydrocarbon Compounds
,”
J. Chem. Eng. Data
,
62
(
10
), pp.
3488
3500
.
69.
Chen
,
Z.
, and
Yang
,
D.
,
2018
, “
Determination of Mutual Solubility Between n-Alkanes/n-Alkylbenzenes and Water by Using Peng-Robinson Equation of State with Modified Alpha Functions and Generalized BIP Correlations
,”
Fluid Phase Equilib.
,
477
, pp.
19
29
.
70.
Chen
,
Z.
, and
Yang
,
D.
,
2018
, “
Prediction of Phase Behaviour for n-Alkane-CO2-Water Systems with Consideration of Mutual Solubility Using Peng-Robinson Equation of State
,”
J. Supercrit. Fluids
,
138
, pp.
174
186
.
71.
Chen
,
Z.
, and
Yang
,
D.
,
2018
, “
Quantification of Phase Behaviour of Solvents-Heavy Oil Systems in the Presence of Water at High Pressures and Elevated Temperatures
,”
Fuel
,
232
, pp.
803
816
.
72.
Li
,
X.
, and
Yang
,
D.
,
2013
, “
Determination of Mutual Solubility Between CO2 and Water by Using the Peng-Robinson Equation of State with Modified Alpha Function and Binary Interaction Parameter
,”
Ind. Eng. Chem. Res.
,
52
(
38
), pp.
13829
13838
.
73.
Peng
,
D. Y.
, and
Robinson
,
D. B.
,
1976
, “
Two and Three Phase Equilibrium Calculations for Systems Containing Water
,”
Can. J. Chem. Eng.
,
54
(
5
), pp.
595
599
.
74.
Søreide
,
I.
, and
Whitson
,
C. H.
,
1992
, “
Peng-Robinson Predictions for Hydrocarbons, CO2, N2 and H2S with Pure Water and NaCl-Brines
,”
Fluid Phase Equilib.
,
77
, pp.
217
240
.
75.
Whitson
,
C. H.
, and
Brule
,
M. R.
,
2000
,
Phase Behavior
,
Monograph Series, SPE
,
Richardson, TX
.
76.
Kordas
,
A.
,
Tsoutsouras
,
K.
,
Stamataki
,
S.
, and
Tassios
,
D.
,
1994
, “
A Generalized Correlation for the Interaction Coefficients of CO2-Hydrocarbon Binary Mixtures
,”
Fluid Phase Equilib.
,
93
, pp.
141
166
.
77.
Twu
,
C. H.
, and
Chan
,
H.-S.
,
2009
, “
Rigorously Universal Methodology of Volume Translation for Cubic Equations of State
,”
Ind. Eng. Chem. Res.
,
48
(
12
), pp.
5901
5906
.
78.
Peneloux
,
A.
,
Rauzy
,
E.
, and
Freze
,
R.
,
1982
, “
A Consistent Correction for Redlich-Kwong-Soave Volumes
,”
Fluid Phase Equilib.
,
8
(
1
), pp.
7
23
.
79.
Miqueu
,
C.
,
Mendiboure
,
B.
,
Graciaa
,
A.
, and
Lachaise
,
J.
,
2003
, “
Modelling of the Surface Tension of Pure Components with the Gradient Theory of Fluid Interfaces: A Simple and Accurate Expression for the Influence Parameters
,”
Fluid Phase Equilib.
,
207
(
1–2
), pp.
225
246
.
80.
Chiquet
,
P.
,
Daridon
,
J.-L.
,
Broseta
,
D.
, and
Thibeau
,
S.
,
2007
, “
CO2/Water Interfacial Tensions under Pressure and Temperature Conditions of CO2 Geological Storage
,”
Energy Convers. Manage.
,
48
(
3
), pp.
736
744
.
81.
Shaw
,
D.
,
Maczynski
,
A.
,
Goral
,
M.
,
Wisniewska-Goclowska
,
B.
,
Skrzecz
,
A.
,
Owczarek
,
I.
,
Blazej
,
K.
,
Haulait-Pirson
,
M.-C.
,
Hefter
,
G. T.
,
Huyskens
,
P. L.
,
Kapuku
,
F.
,
Maczynska
,
Z.
, and
Szafranski
,
A.
,
2006
, “
IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater-Revised and Updated. Part 9. C10 Hydrocarbons with Water
,”
J. Phys. Chem. Ref. Data
,
35
(
1
), pp.
93
151
.
82.
Lemmon
,
E. W.
,
McLinden
,
M. O.
, and
Friend
,
D. G.
,
2012
, “Thermophysical Properties of Fluid Systems,”
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
,
P. J.
Linstrom
, and
W. G.
Mallard
, eds,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
83.
Quayle
,
O. R.
,
1953
, “
The Parachors of Organic Compounds. An Interpretation and Catalogue
,”
Chem. Rev.
,
53
(
3
), pp.
439
589
.
84.
Donahue
,
D. J.
, and
Bartell
,
F. E.
,
1952
, “
The Boundary Tension at Water-Organic Liquid Interfaces
,”
J. Phys. Chem.
,
56
(
4
), pp.
480
484
.
85.
Sutton
,
R. P.
,
2009
, “
An Improved Model for Water-Hydrocarbon Surface Tension at Reservoir Conditions
,”
Presented at the SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Oct. 4–7
, Paper No. SPE 124968-MS.
86.
Kontogeorgis
,
G. M.
,
Voutsas
,
E. C.
, and
Yakoumis
,
I. V.
,
1996
, “
An Equation of State for Associating Fluids
,”
Ind. Eng. Chem. Res.
,
35
(
11
), pp.
4310
4318
.
87.
Bikkina
,
P. K.
,
Shoham
,
O.
, and
Uppaluri
,
R.
,
2011
, “
Equilibrated Interfacial Tension Data of the CO2-Water System at High Pressures and Moderate Temperatures
,”
J. Chem. Eng. Data
,
56
(
10
), pp.
3725
3733
.
88.
Sachs
,
W.
, and
Meyn
,
V.
,
1995
, “
Pressure and Temperature Dependence of the Surface Tension in the System Natural Gas/Water Principles of Investigation and the First Precise Experimental Data for Pure Methane/Water at 25 °C up to 46.8 MPa
,”
Colloid Surf. A: Physicochem. Eng. Asp.
,
94
(
2–3
), pp.
291
301
.
89.
Kato
,
K.
,
Nagahama
,
K.
, and
Hirata
,
M.
,
1981
, “
Generalized Interaction Parameters for the Peng-Robinson Equation of State: Carbon Dioxide-n-Paraffin Binary Systems
,”
Fluid Phase Equilib.
,
7
(
3–4
), pp.
219
231
.
90.
Vitu
,
S.
,
Privat
,
R.
,
Jaubert
,
J.-N.
, and
Mutelet
,
F.
,
2008
, “
Predicting the Phase Equilibria of CO2 + Hydrocarbon Systems with the PPR78 Model (PR EOS and kij Calculated Through a Group Contribution Method)
,”
J. Supercrit. Fluid
,
45
(
1
), pp.
1
26
.
91.
Li
,
X.
,
Yang
,
D.
,
Zhang
,
X.
,
Zhang
,
G.
, and
Gao
,
J.
,
2016
, “
Binary Interaction Parameters of CO2-Heavy-n-Alkanes Systems by Using Peng-Robinson Equation of State with Modified Alpha Function
,”
Fluid Phase Equilib.
,
417
, pp.
77
86
.
You do not currently have access to this content.