Woody biomasses such as ash tree (AT), hybrid poplar (HP), and rhododendron (RD) were subjected to torrefaction and carbonization at temperatures of 200 °C and 400 °C. Likewise, several lignite samples were carbonized at 750 °C. Various binary fuel blends such as raw lignite/raw biomass, raw lignite/biochar, lignitic char/raw biomass, and lignitic char/biochar were prepared where the fraction of biomass or biochar was 10 wt% in the blends. The cocombustion characteristics of these blends were investigated through a thermal analysis method from the synergetic point of view considering the fuel properties and the combustion performance. Some parameters relevant to the combustion reactivity such as ignition point, maximum rate, peak temperature, and burnout temperature were commented to figure out whether synergistic interaction or additive behavior governs the combustion characteristics of the blends. Also, the combustion performance indices such as ignition index (Ci), burnout index (Cb), comprehensive combustibility index (S), and the burning stability index (DW) were estimated. It was concluded that the combinations of the additive behavior and the synergistic interactions governs the cocombustion process, and the kind of the fuels and their thermal history determine the reactivity and the interactions during cocombustion.

References

References
1.
Xie
,
G.
,
Gupta
,
A. K.
,
Zhang
,
Y.
,
Manca
,
O.
, and
Zhang
,
H.
,
2018
, “
Experimental Investigation Into the Characteristics of Chars Obtained From Fast Pyrolysis of Different Biomass Fuels
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
040301
.
2.
Onenc
,
S.
,
Retschitzegger
,
S.
,
Evic
,
N.
,
Kienzl
,
N.
, and
Yanik
,
J.
,
2018
, “
Characteristics and Synergistic Effects of Co-Combustion of Carbonaceous Wastes With Coal
,”
Waste Manage.,
71
, pp.
192
199
.
3.
Guo
,
F.
, and
Zhong
,
Z.
,
2018
, “
Co-Combustion of Anthracite Coal and Wood Pellets: Thermodynamic Analysis, Combustion Efficiency, Pollutant Emissions and Ash Slagging
,”
Environ. Pollut.,
239
, pp.
21
29
.
4.
Haykiri-Acma
,
H.
,
Yaman
,
S.
,
Kucukbayrak
,
S.
, and
Morcali
,
M. H.
,
2015
, “
Does Blending the Ashes of Chestnut Shell and Lignite Create Synergistic Interaction on Ash Fusion Temperatures?
Fuel Process. Technol.,
140
, pp.
165
171
.
5.
An
,
Y.
,
Tahmasebi
,
A.
, and
Yu
,
J.
,
2017
, “
Mechanism of Synergy Effect During Microwave Co-Pyrolysis of Biomass and Lignite
,”
J. Anal. Appl. Pyrol.,
128
, pp.
75
82
.
6.
Liu
,
H. P.
,
Liang
,
W.
,
Qin
,
H.
, and
Wang
,
Q.
,
2016
, “
Synergy in Co-Combustion of Oil Shale Semi-Coke With Torrefied Cornstalk
,”
Appl. Therm. Eng.,
109
, pp.
653
662
.
7.
Wei
,
J.
,
Gong
,
Y.
,
Guo
,
Q.
,
Chen
,
X.
,
Ding
,
L.
, and
Yu
,
G.
,
2019
, “
A Mechanism Investigation of Synergy Behaviour Variations During Blended Char Co-Gasification of Biomass and Different Rank Coals
,”
Renew. Energy
,
131
, pp.
597
605
.
8.
Zhang
,
Y.
,
Zhang
,
Y.
,
Geng
,
P.
, and
Liu
,
R.
,
2017
, “
Synergistic Co-Processing of Biomass Torrefaction Products With Coal and Coal Char
,”
Energy Procedia
,
142
, pp.
1382
1387
.
9.
Ahmed
,
I. I.
,
Nipattummakul
,
N.
, and
Gupta
,
A. K.
,
2011
, “
Characteristics of Syngas From Co-Gasification of Polyethylene and Woodchips
,”
Appl. Energy
,
88
(
1
), pp.
165
174
.
10.
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2018
, “
Kinetics of Synergistic Effects in Co-Pyrolysis of Biomass With Plastic Wastes
,”
Appl. Energy
,
220
, pp.
408
418
.
11.
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2018
, “
Characteristics of Char From Co-Pyrolysis of Biomass and Plastic Waste
,”
ASME Power and Energy
,
Lake Buena Vista, FL
,
June 24–28
, Paper PowerEnergy 2018-7255.
12.
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2018
, “
Synergistic Effects in Steam Gasification of Combined Biomass and Plastic Waste Mixtures
,”
Appl. Energy
,
211
, pp.
230
236
.
13.
Sung
,
Y.
,
Lee
,
S.
,
Kim
,
C.
,
Jun
,
D.
,
Moon
,
C.
,
Choi
,
G.
, and
Kim
,
D.
,
2016
, “
Synergistic Effect of Co-Firing Woody Biomass With Coal on NOx Reduction and Burnout During Air-Staged Combustion
,”
Exp. Therm. Fluid Sci.,
71
, pp.
114
125
.
14.
Sarkar
,
P.
,
Sahu
,
S. G.
,
Mukherjee
,
A.
,
Kumar
,
M.
,
Adak
,
A. K.
,
Chakraborty
,
N.
, and
Biswas
,
S.
,
2014
, “
Co-Combustion Studies for Potential Application of Sawdust or Its Low Temperature Char as Co-Fuel With Coal
,”
Appl. Therm. Eng.,
63
(
2
), pp.
616
623
.
15.
Junga
,
R.
,
Knauer
,
W.
,
Niemiec
,
P.
, and
Tanczuk
,
M.
,
2017
, “
Experimental Tests of Co-Combustion of Laying Hens Manure With Coal by Using Thermogravimetric Analysis
,”
Renew. Energy
,
111
, pp.
245
255
.
16.
Kazagic
,
A.
, and
Smajevic
,
I.
,
2009
, “
Synergy Effects of Co-Firing Wooden Biomass With Bosnian Coal
,”
Energy
,
34
(
5
), pp.
699
707
.
17.
Yu
,
D.
,
Chen
,
M.
,
Wei
,
Y.
,
Niu
,
S.
, and
Xue
,
F.
,
2016
, “
An Assessment on Co-Combustion Characteristics of Chinese Lignite and Eucalyptus Bark With TG–MS Technique
,”
Powder Technol.,
294
, pp.
463
471
.
18.
Barbanera
,
M.
,
Cotana
,
F.
, and
Di Matteo
,
U.
,
2018
, “
Co-Combustion Performance and Kinetic Study of Solid Digestate With Gasification Biochar
,”
Renew. Energy
,
121
, pp.
597
605
.
19.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2012
, “
Burnout Characteristics During Co-Combustion of Binary Lignite Blends
,”
J. Energy Inst.
,
85
(
1
), pp.
1
6
.
20.
Liu
,
Z.
,
Hu
,
W.
,
Jiang
,
Z.
,
Mi
,
B.
, and
Fei
,
B.
,
2016
, “
Investigating Combustion Behaviors of Bamboo, Torrefied Bamboo, Coal and Their Respective Blends by Thermogravimetric Analysis
,”
Renew. Energy
,
87
(
Part 1
), pp.
346
352
.
21.
Oladejo
,
J.
,
Adegbite
,
S.
,
Gao
,
X.
,
Liu
,
H.
, and
Wu
,
T.
,
2018
, “
Catalytic and Non-Catalytic Synergistic Effects and Their Individual Contributions to Improved Combustion Performance of Coal/Biomass Blends
,”
Appl. Energy
,
211
, pp.
334
345
.
22.
Akinyemi
,
O. S.
,
Jiang
,
L. L.
,
Buchireddy
,
P. R.
,
Barskov
,
S. O.
,
Guillory
,
J. L.
, and
Holmes
,
W.
,
2018
, “
Investigation of Effect of Biomass Torrefaction Temperature on Volatile Recovery Through Combustion
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112003
.
23.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2008
, “
Combinations of Synergistic Interactions and Additive Behavior During the Co-Oxidation of Chars From Lignite and Biomass
,”
Fuel Process. Technol.
,
89
(
2
), pp.
176
182
.
24.
Qin
,
H.
,
Wang
,
W.
,
Liu
,
H.
,
Zhang
,
L.
,
Wang
,
Q.
,
Shi
,
C.
, and
Yao
,
K.
,
2017
, “
Thermal Behavior Research for Co-Combustion of Furfural Residue and Oil Shale Semi-Coke
,”
Appl. Therm. Eng.,
120
, pp.
19
25
.
25.
Liu
,
H. P.
,
Liang
,
W. X.
,
Qin
,
H.
, and
Wang
,
Q.
,
2016
, “
Thermal Behavior of Co-Combustion of Oil Shale Semi-Coke With Torrefied Cornstalk
,”
Appl. Therm. Eng.,
109
(
Part A
), pp.
413
422
.
26.
Yang
,
Y.
,
Lu
,
X.
, and
Wang
,
Q.
,
2017
, “
Investigation on the Co-Combustion of Low Calorific Oil Shale and Its Semi-Coke by Using Thermogravimetric Analysis
,”
Energy Convers. Manage.,
136
, pp.
99
107
.
27.
Zhou
,
C.
,
Liu
,
G.
,
Fang
,
T.
, and
Lam
,
P. K. S.
,
2015
, “
Investigation on Thermal and Trace Element Characteristics During Co-Combustion Biomass With Coal Gangue
,”
Bioresour. Technol.
175
, pp.
454
462
.
28.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2019
, “
Unburnt Carbon From Oxygen-Enriched Combustion of Low Quality Fuels at Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012101
.
29.
Vyazovkin
,
S.
,
Chrissafis
,
K.
,
Di Lorenzo
,
M. L.
,
Koga
,
N.
,
Pijolat
,
M.
,
Roduit
,
B.
,
Sbirrazzuoli
,
N.
, and
Sunol
,
J. J.
,
2014
, “
ICTAC Kinetics Committee Recommendations for Collecting Experimental Thermal Analysis Data for Kinetic Computations
,”
Thermochim. Acta
,
590
, pp.
1
23
.
30.
Kumar
,
R.
, and
Singh
,
R. Y.
,
2017
, “
An Investigation of Co-Combustion Municipal Sewage Sludge With Biomass in a 20 kW BFB Combustor Under Air-Fired and Oxygen-Enriched Condition
,”
Waste Manage.
,
70
, pp.
114
126
.
31.
Niu
,
S.
,
Chen
,
M.
,
Li
,
Y.
, and
Xue
,
F.
,
2016
, “
Evaluation on the Oxy-Fuel Combustion Behavior of Dried Sewage Sludge
,”
Fuel
,
178
, pp.
129
138
.
32.
Wang
,
Z.
,
Hong
,
C.
,
Xing
,
Y.
,
Li
,
Y.
,
Feng
,
L.
, and
Jia
,
M.
,
2018
, “
Combustion Behaviors and Kinetics of Sewage Sludge Blended With Pulverized Coal: With and Without Catalysts
,”
Waste Manage.
74
, pp.
288
296
.
33.
He
,
C.
,
Giannis
,
A.
, and
Wang
,
J. Y.
,
2013
, “
Conversion of Sewage Sludge to Clean Solid Fuel Using Hydrothermal Carbonization: Hydrochar Fuel Characteristics and Combustion Behavior
,”
Appl. Energy
,
111
, pp.
257
266
.
34.
Liu
,
Y.
,
Cao
,
X.
,
Duan
,
X.
,
Wang
,
Y.
, and
Che
,
D.
,
2018
, “
Thermal Analysis on Combustion Characteristics of Predried Dyeing Sludge
,”
Appl. Therm. Eng.
140
, pp.
158
165
.
35.
Park
,
S. W.
,
Jang
,
C. H.
,
Baek
,
K. R.
, and
Yang
,
J. K.
,
2012
, “
Torrefaction and Low-Temperature Carbonization of Woody Biomass: Evaluation of Fuel Characteristics of the Products
,”
Energy
,
45
(
1
), pp.
676
685
.
36.
Yin
,
Y.
,
Yin
,
J.
,
Zhang
,
W.
,
Tian
,
H.
,
Hu
,
Z.
,
Ruan
,
M.
,
Song
,
Z.
, and
Liu
,
L.
,
2018
, “
Effect of Char Structure Evolution During Pyrolysis on Combustion Characteristics and Kinetics of Waste Biomass
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072203
.
37.
Gao
,
X.
,
Zhang
,
Y.
,
Li
,
B.
,
Xie
,
G.
, and
Zhao
,
W.
,
2018
, “
Experimental Investigation Into Characteristics of Chars Obtained From Fast Pyrolysis of Different Biomass Fuels
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
044501
.
38.
Haykiri-Acma
,
H.
,
Yaman
,
S.
, and
Kucukbayrak
,
S.
,
2015
, “
Does Carbonization Avoid Segregation of Biomass and Lignite During Co-Firing? Thermal Analysis Study
,”
Fuel Process. Technol.
137
, pp.
312
319
.
39.
Klass
,
D. L.
,
1998
,
Biomass for Renewable Energy, Fuels, and Chemicals
,
Academic Press
,
San Diego, CA
.
40.
Howell
,
A.
,
Beagle
,
E.
, and
Belmont
,
E.
,
2018
, “
Torrefaction of Healthy and Beetle Kill Pine and Co-Combustion With Sub-Bituminous Coal
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
042002
.
You do not currently have access to this content.