In this study, computational fluid dynamics (CFD) modeling capability of near-wall flow and heat transfer was evaluated against experimental data. Industry-standard wall models for RANS and large-eddy simulation (LES) (law of the wall) were examined against the near-wall flow and heat flux measurements from the transparent combustion chamber (TCC-III) engine. The study shows that the measured, normalized velocity profile does not follow the law of the wall. This wall model, which provides boundary conditions for the simulations, failed to predict the measured velocity profiles away from the wall. LES showed a reasonable prediction in peak heat flux and peak in-cylinder pressure to the experiment, while RANS-heat flux was closer to experimental heat flux but lower in peak pressure. The measurement resolution is higher than that of the simulations, indicating that higher spatial resolution for CFD is needed near the wall to accurately represent the flow and heat transfer. Near-wall mesh refinement was then performed in LES. The wall-normal velocity from the refined mesh case matches better with measurements compared with the wall-parallel velocity. Mesh refinement leads to a normalized velocity profile that matches with measurement in trend only. In addition, the heat flux and its peak value matches well with the experimental heat flux compared with the base mesh.

References

References
1.
Myers
,
J. P.
, and
Alkidas
,
A. C.
,
1978
, “
Effects of Combustion-Chamber Surface Temperature on the Exhaust Emissions of a Single-Cylinder Spark-Ignition Engine
,” Paper No. SAE 780642.
2.
Alkidas
,
A. C.
, and
Myers
,
J. P.
,
1982
, “
Transient Heat-Flux Measurements in the Combustion Chamber of a Spark-Ignition Engine
,”
J. Heat Transfer
,
104
(
1
), pp.
62
67
.
3.
Chang
,
J.
,
Güralp
,
O.
,
Filipi
,
Z.
,
Assanis
,
D. N.
,
Kuo
,
T.-W.
,
Najt
,
P.
, and
Rask
,
R.
,
2004
, “
New Heat Transfer Correlation for an HCCI Engine Derived From Measurements of Instantaneous Surface Heat Flux
,” Paper No. SAE 2004-01-2996.
4.
Martinez-Frias
,
J.
,
Aceves
,
S. M.
,
Flowers
,
D.
,
Smith
,
J. R.
, and
Dibble
,
R.
,
2002
, “
Thermal Charge Conditioning for Optimal HCCI Engine Operation
,”
J. Energy Resour. Technol.
,
124
(
1
), pp.
67
75
.
5.
Wang
,
X.
,
Price
,
P.
,
Stone
,
C. R.
, and
Richardson
,
D.
,
2007
, “
Heat Release and Heat Flux in a Spray-Guided Direct-Injection Gasoline Engine
,”
Proc. Inst. Mech. Eng., Part D
,
221
(
11
), pp.
1441
1452
.
6.
Reuss
,
D. L.
,
Kuo
,
T. W.
,
Silvas
,
G.
,
Natarajan
,
V.
, and
Sick
,
V.
,
2008
, “
Experimental Metrics for Identifying Origins of Combustion Variability During Spark-Assisted Compression Ignition
,”
Int. J. Engine Res.
,
9
(
5
), pp.
409
434
.
7.
Hall
,
M. J.
, and
Bracco
,
F. V.
,
1986
, “
Cycle-Resolved Velocity and Turbulence Measurements Near the Cylinder Wall of a Firing S.I. Engine
,” Paper No. SAE 861530.
8.
Foster
,
D. E.
, and
Witze
,
P. O.
,
1987
, “
Velocity Measurements in the Wall Boundary Layer of a Spark-Ignited Research Engine
,” Paper No. SAE 872105.
9.
Pierce
,
P. H.
,
Ghandhi
,
J. B.
, and
Martin
,
J. K.
,
1992
, “
Near-Wall Velocity Characteristics in Valved and Ported Motored Engines
,” Paper No. SAE 920152.
10.
Alharbi
,
A. Y.
, and
Sick
,
V.
,
2010
, “
Investigation of Boundary Layers in Internal Combustion Engines Using a Hybrid Algorithm of High Speed Micro-PIV and PTV
,”
Exp. Fluids
,
49
(
4
), pp.
949
959
.
11.
Jainski
,
C.
,
Lu
,
L.
,
Dreizler
,
A.
, and
Sick
,
V.
,
2013
, “
High-Speed Micro Particle Image Velocimetry Studies of Boundary-Layer Flows in a Direct-Injection Engine
,”
Int. J. Engine Res.
,
14
(
3
), pp.
247
259
.
12.
Greene
,
M.
,
2016
, “
Momentum Near-Wall Region Characterization in a Reciprocating Internal-Combustion Engine
,” Ph.D. thesis,
University of Michigan
,
Ann Arbor, MI
.
13.
MacDonald
,
J. R.
,
Fajardo
,
C. M.
,
Greene
,
M.
,
Reuss
,
D.
, and
Sick
,
V.
,
2017
, “
Two-Point Spatial Velocity Correlations in the Near-Wall Region of a Reciprocating Internal Combustion Engine
,” Paper No. SAE 2017-01-0613.
14.
Lyford-Pike
,
E.
, and
Heywood
,
J. B.
,
1984
, “
Thermal Boundary Layer Thickness in the Cylinder of a Spark-Ignition Engine
,”
Int. J. Heat Mass. Tranfer
,
27
(
10
), pp.
1873
1878
.
15.
Lucht
,
R. P.
, and
Maris
,
M. A.
,
1987
, “
CARS Measurements of Temperature Profiles Near a Wall in an Internal Combustion Engine
,” Paper No. SAE 870459.
16.
Schlichting
,
H.
,
1979
,
Boundary-Layer Theory
,
McGraw-Hill
,
New York
.
17.
Ma
,
P. C.
,
Ewan
,
T.
,
Jainski
,
C.
,
Lu
,
L.
,
Dreizler
,
A.
,
Sick
,
V.
, and
Ihme
,
M.
,
2016
, “
Development and Analysis of Wall Models for Internal Combustion Engine Simulations Using High-Speed Micro-PIV Measurements
,”
Flow Turbul. Combust.
,
98
(
1
), pp.
283
309
.
18.
Schmitt
,
M.
,
2014
,
Direct Numerical Simulations in Engine-Like Geometries
,
Dr. sc., ETH Zurich
,
Zürich, Switzerland
.
19.
Amsden
,
A. A.
,
1997
,
KIVA-3V: A Block-Structured KIVA Program for Engines With Vertical or Canted Valves
,
Los Alamos National Laboratory
,
Los Alamos, New Mexico
.
20.
Richards
,
K.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2018
,
CONVERGE v2.4 Manual
,
Convergent Science, Inc.
,
Madison, WI
.
21.
Gubba
,
S. R.
,
Jupudi
,
R. S.
,
Pasunurthi
,
S. S.
,
Wijeyakulasuriya
,
S. D.
,
Primus
,
R. J.
,
Klingbeil
,
A.
, and
Finney
,
C. E. A.
,
2018
, “
Capturing Pressure Oscillations in Numerical Simulations of Internal Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082205
.
22.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
See
,
Y. C.
, and
Le Moine
,
A.
,
2018
, “
Multidimensional Numerical Simulations of Knocking Combustion in a Cooperative Fuel Research Engine
,”
ASME J. Energy Resour. Technol.,
140
(
10
), p.
102205
.
23.
Han
,
Z.
, and
Reitz
,
R. D.
,
1997
, “
A Temperature Wall Function Formulation for Variable-Density Turbulent Flows With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat. Mass. Tranfer
,
40
(
3
), pp.
613
625
.
24.
Keum
,
S.
,
Park
,
H.
,
Babajimopoulos
,
A.
,
Assanis
,
D. N.
, and
Jung
,
D.
,
2011
, “
Modelling of Heat Transfer in Internal Combustion Engines With Variable Density Effect
,”
Int. J. Engine Res.
,
12
(
6
), pp.
513
526
.
25.
Ma
,
P. C.
,
Greene
,
M.
,
Sick
,
V.
, and
Ihme
,
M.
,
2017
, “
Non-Equilibrium Wall-Modeling for Internal Combustion Engine Simulations With Wall Heat Transfer
,”
Int. J. Engine Res.
,
18
(
1–2
), pp.
15
25
.
26.
Rutland
,
C. J.
,
2011
, “
Large-Eddy Simulations for Internal Combustion Engines—a Review
,”
Int. J. Engine Res.
,
12
(
5
), pp.
421
451
.
27.
Schmitt
,
M.
,
Hu
,
R. N.
,
Wright
,
Y. M.
,
Soltic
,
P.
, and
Boulouchos
,
K.
,
2015
, “
Multiple Cycle LES Simulations of a Direct Injection Natural Gas Engine
,”
Flow Turbul. Combust.
,
95
(
4
), pp.
645
668
.
28.
di Mare
,
F.
,
Knappstein
,
R.
, and
Baumann
,
M.
,
2014
, “
Application of LES-Quality Criteria to Internal Combustion Engine Flows
,”
Comput. Fluids
,
89
, pp.
200
213
.
29.
Kuo
,
T. W.
,
Yang
,
X.
,
Gopalakrishnan
,
V.
, and
Chen
,
Z.
,
2014
, “
Large Eddy Simulation for IC Engine Flows
,”
Oil Gas Sci. Technol.
,
69
(
1
), pp.
61
81
.
30.
Ameen
,
M. M.
,
Yang
,
X.
,
Kuo
,
T.-w.
,
Xue
,
Q.
, and
Som
,
S.
,
2015
, “
LES for Simulating the Gas Exchange Process in a Spark Ignition Engine
,” Paper No.
ASME ICEF2015-1002.
31.
Rakopoulos
,
C. D.
,
Kosmadakis
,
G. M.
, and
Pariotis
,
E. G.
,
2010
, “
Critical Evaluation of Current Heat Transfer Models Used in CFD In-Cylinder Engine Simulations and Establishment of a Comprehensive Wall-Function Formulation
,”
Appl. Energ.
,
87
(
5
), pp.
1612
1630
.
32.
Schiffmann
,
P.
,
Gupta
,
S.
,
Reuss
,
D.
,
Sick
,
V.
,
Yang
,
X.
, and
Kuo
,
T. W.
,
2015
, “
TCC-III Engine Benchmark for Large-Eddy Simulation of IC Engine Flows
,”
Oil Gas Sci. Technol.,
71
(
3
).
33.
Schiffmann
,
P.
,
Reuss
,
D. L.
, and
Sick
,
V.
,
2017
, “
TCC Collection
,” https://deepblue.lib.umich.edu/data/collections/8k71nh59c
34.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
35.
Pomraning
,
E.
, and
Rutland
,
C. J.
,
2002
, “
Dynamic One-Equation Nonviscosity Large-Eddy Simulation Model
,”
AIAA J.
,
40
(
4
), pp.
689
701
.
36.
Sutherland
,
W.
,
1893
, “
LII. The Viscosity of Gases and Molecular Force
,”
Philos. Mag. J. Sci.
,
36
(
223
), pp.
507
531
.
37.
Schiffmann
,
P.
,
2016
, “
Root Causes of Cycle-to-Cycle Combustion Variations in Spark Ignited Engines
,” Ph.D. thesis,
University of Michigan
,
Ann Arbor, MI
.
38.
Nijeweme
,
D. J. O.
,
Kok
,
J. B. W.
,
Stone
,
C. R.
, and
Wyszynski
,
L.
,
2001
, “
Unsteady In-Cylinder Heat Transfer in a Spark Ignition Engine: Experiments and Modelling
,”
Proc. Inst. Mech. Eng., Part D
,
215
(
6
), pp.
747
760
.
You do not currently have access to this content.