This study presents a new wind turbine blade design for overcoming the restrictions of large-scale wind turbines deployment. The road design, terrain nature, and logistic capabilities represent the main barriers to maneuver blades during a journey to a windy site. The natural finger and the Fibonacci sequence inspired the author to design a new blade that distinguishes with the ability to fold. This study focuses on the aerodynamic design of a 1.5-MW conventional blade and modifies its skin and spar to carry out the aim. The ability to fold enables the blade to maneuver and avoid terrain-road restrictions. The augmented maneuverability of this concept simplifies a route scenario and reduces transportation cost. This study simulates the added attribute and investigates the design modifications effect by using the finite element method.

References

References
1.
Kaygusuz
,
K.
,
2004
, “
Wind Energy: Progress and Potential
,”
Energy Sources
,
26
(
2
), pp.
95
105
.
2.
Smith
,
K.
,
2000
,
WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics
.
3.
Veers
,
P.
,
2003
, “
Trends in the Design, Manufacture and Evaluation of Wind Turbine Blades
,”
Wind Energy
,
6
(
3
), pp.
245
259
.
4.
Brøndsted
,
P.
,
Lilholt
,
H.
, and
Lystrup
,
A.
,
2005
, “
Composite Materials for Wind Power Turbine Blade
,”
Annu. Rev. Mater. Res.
,
35
(
1
), pp.
505
538
.
5.
Shakoor
,
R.
,
Hassan
,
M.
, and
Rasheed
,
N.
,
2016
, “
Wind Farm Layout Optimization Using Area Dimensions and Definite Point Selection Techniques
,”
Renewable Energy
,
88
, pp.
154
163
.
6.
Tenguria
,
N.
,
Mittal
,
N.
, and
Ahmed
,
S.
,
2011
, “
Structural Analysis of 38.95M Horizontal Axis Wind Turbine Blades Report
,”
IJMME
,
6
(
2
), pp.
183
188
.
7.
Maria
,
M. R. V. S.
, and
Jacobson
,
M. Z.
,
2009
, “
Investigating the Effect of Large Wind Farms on Energy in the Atmosphere
,”
Energies
,
2
(
4
), pp.
816
838
.
8.
Cotrell
,
J.
,
Stehly
,
T.
, and
Johnson
,
J.
,
2014
, “
Analysis of Transportation and Logistics Challenges Affecting the Deployment of Larger Wind Turbines: Summary of Results
, Technical Report NREL/TP-5000-61063.
9.
Sandia National Laboratories
,
2003
, “
Cost Study for Large Wind Turbine Blades: WindPACT Blade System Design Studies
” SAND2003-1428..
10.
Kulović
,
M.
,
2004
, “
Freight Transport Costs Model Based on Truck Fleet Operational Parameters
,”
Promet—Traffic&Transportation
,
16
(
6
), pp.
321
325
.
11.
DFF INTERNATIONAL LTD
,
2014
, “
Cost Tables for Road Haulage Association
,” http://www.andersonstransport.com/documents/terms/Cost-Tables-2014-EDITION.pdf.
12.
Akhtaruzzaman
,
M.
, and
Shafie
,
A.
,
2011
, “
Geometrical Substantiation of Phi, the Golden Ratio and the Baroque of Nature, Architecture, Design and Engineering
,”
Int. J. Arts
,
1
(
1
), pp.
1
22
.
13.
Loth
,
E.
,
Selig
,
M.
, and
Moriarty
,
P.
,
2010
, “
Morphing Segmented Wind Turbine Concept
,”
28th AIAA Applied Aerodynamics Conference.
,
American Institute of Aeronautics and Astronautics , Chicago
,
June 28
, pp.
1
6
.
14.
Bhat
,
C.
,
Noronha
,
D. J.
, and
Saldanha
,
F. A.
,
2015
, “
Structural Performance Evaluation of Modularized Wind Turbine Blade Through Finite Element Simulation
,”
J. Energy Econ. Dev.
,
1
(
1
), pp.
79
90
.
15.
Abdulaziz
,
A. H.
,
Elsabbagh
,
A.
,
Elnady
,
T.
, and
International Institute of Acoustics and Vibration (IIAV)
,
2015
, “
Using Acoustics Emission in Validating a New Design and Manufacturing Concepts of a Horizontal Axis Wind Turbine Blade
,”
ICSV22
,
Florence (Italy)
,
July 12–16
, pp.
1
8
.
16.
El-Sheikh
,
M. A.
,
Taher
,
M. F.
, and
Metwalli
,
S. M.
,
2012
, “
New Optimum Humanoid Hand Design for Prosthetic Applications
,”
Int. Artif. Organs.
,
35
(
4
), pp.
251
262
.
17.
Edon
,
M.
,
2007
, “
38 Meter Wind Turbine Blade Design, Internship Report
,” Nordisk Folkecenter.
18.
Pabut
,
O.
,
Allikas
,
G.
,
Herranen
,
H.
, and
Talalaev
,
R.
,
2012
, “
Model Validation and Structural Analysis of a Small Wind Turbine Blade
,”
8th International DAAAM Baltic Conference
,
Tallinn University of Technology, Tallinn, Estonia
,
Apr. 19–21
, pp.
74
79
.
19.
Walker
,
J. A.
,
2000
, “
Does A Rigid Body Limit Maneuverability?
J. Exp. Biol.
,
203
(
22
), pp.
3391
3396
.
20.
Hays
,
A.
, and
Van Treuren
,
K. W.
,
2019
, “
A Study of Power Production and Noise Generation of a Small Wind Turbine for an Urban Environment
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051202
.
21.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
22.
Tarfaoui
,
M.
,
Shah
,
O. R.
, and
Nachtane
,
M.
,
2019
, “
Design and Optimization of Composite Offshore Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051204
.
23.
Loth
,
E.
,
Steele
,
A.
,
Qin
,
C.
,
Ichter
,
B.
,
Selig
,
M. S.
, and
Moriarty
,
P.
,
2017
, “
Downwind Pre-Aligned Rotors for Extreme-Scale Wind Turbines
,”
Wind Energy
,
20
(
7
), pp.
1241
1259
.
You do not currently have access to this content.