Predicting the rate of penetration (ROP) is a significant factor in drilling optimization and minimizing expensive drilling costs. However, due to the geological uncertainty and many uncontrolled operational parameters influencing the ROP, its prediction is still a complex problem for the oil and gas industries. In the present study, a reliable computational approach for the prediction of ROP is proposed. First, fscaret package in a R environment was implemented to find out the importance and ranking of the inputs’ parameters. According to the feature ranking process, out of the 25 variables studied, 19 variables had the highest impact on ROP based on their ranges within this dataset. Second, a new model that is able to predict the ROP using real field data, which is based on artificial neural networks (ANNs), was developed. In order to gain a deeper understanding of the relationships between input parameters and ROP, this model was used to check the effect of the weight on bit (WOB), rotation per minute (rpm), and flow rate (FR). Finally, the simulation results of three deviated wells showed an acceptable representation of the physical process, with reasonable predicted ROP values. The main contribution of this research as compared to previous studies is that it investigates the influence of well trajectory (azimuth and inclination) and mechanical earth modeling parameters on the ROP for high-angled wells. The major advantage of the present study is optimizing the drilling parameters, predicting the proper penetration rate, estimating the drilling time of the deviated wells, and eventually reducing the drilling cost for future wells.

References

References
1.
Hegde
,
C.
, and
Gray
,
K.
,
2018
, “
Evaluation of Coupled Machine Learning Models for Drilling Optimization
,”
J. Nat. Gas Sci. Eng.,
56
(
1
), pp.
397
407
.
2.
Yi
,
P.
,
Kumar
,
A.
, and
Samuel
,
R.
,
2014
, “
Realtime Rate of Penetration Optimization Using the Shuffled Frog Leaping Algorithm
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032902
.
3.
Al-AbdulJabbar
,
A.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Abdelgawad
,
K.
, and
Al-Majed
,
A.
,
2018
, “
A Robust Rate of Penetration Model for Carbonate Formation
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042903
.
4.
Gidh
,
Y. K.
,
Ibrahim
,
H.
, and
Purwanto
,
A.
,
2011
, “
Real-Time Drilling Parameter Optimization System Increases ROP by Predicting/Managing Bit Wear
,”
SPE Digital Energy Conference and Exhibition
,
Woodlands, TX
,
April 19–21
, Paper No. SPE-142880-MS.
5.
Callejo
,
A.
,
Arbatani
,
S.
,
Kövecses
,
J.
,
Kalantari
,
M.
, and
Marchand
,
N. R.
,
2017
, “
Drill Bit Contact Dynamics Including Side Cutting: Simulation and Validation
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022910
.
6.
Wang
,
P.
,
Ni
,
H.
, and
Wang
,
R.
,
2018
, “
A Novel Vibration Drilling Tool Used for Reducing Friction and Improve the Penetration Rate of Petroleum Drilling
,”
J. Pet. Sci. Eng.,
165
(
1
), pp.
436
443
.
7.
Moraveji
,
K. M.
, and
Naderi
,
M.
,
2016
, “
Drilling Rate of Penetration Prediction and Optimization Using Response Surface Methodology and Bat Algorithm
,”
J. Nat. Gas Sci. Eng.,
31
(
1
), pp.
829
841
.
8.
Kahraman
,
S.
,
Bilgin
,
N.
, and
Feridunoglu
,
C.
,
2003
, “
Dominant Rock Properties Affecting the Penetration Rate of Percussive Drills
,”
Int. J. Rock Mech. Min. Sci.
,
40
(
5
), pp.
711
723
.
9.
Ataei
,
M.
,
KaKaie
,
R.
,
Ghavidel
,
M.
, and
Saeidi
,
O.
,
2015
, “
Drilling Rate Prediction of an Open Pit Mine Using the Rock Mass Drillability Index
,”
Int. J. Rock Mech. Min. Sci.,
73
(
1
), pp.
130
138
.
10.
Deng
,
Y.
,
Chen
,
M.
,
Jin
,
Y.
,
Zhang
,
Y.
,
Zou
,
D.
, and
Lu
,
Y.
,
2016
, “
Theoretical and Experimental Study on the Penetration Rate for Roller Cone Bits Based on the Rock Dynamic Strength and Drilling Parameters
,”
J. Nat. Gas Sci. Eng.,
36
(
1
), pp.
117
123
.
11.
Hegde
,
C.
,
Daigle
,
H.
,
Millwater
,
H.
, and
Gray
,
K.
,
2017
, “
Analysis of Rate of Penetration (ROP) Prediction in Drilling Using Physics-Based and Data-Driven Models
,”
J. Pet. Sci. Eng.,
159
(
1
), pp.
295
306
.
12.
Rashidi
,
B.
,
Hareland
,
G.
, and
Wu
,
Z.
,
2015
, “
Performance, Simulation and Field Application Modeling of Rollercone Bits
,”
J. Pet. Sci. Eng.,
133
(
1
), pp.
507
517
.
13.
Kahraman
,
S.
,
Balcı
,
C.
,
Yazıcı
,
S.
, and
Bilgin
,
N.
,
2000
, “
Prediction of the Penetration Rate of Rotary Blast Hole Drills Using a New Drillability Index
,”
Int. J. Rock Mech. Min. Sci.
,
37
(
5
), pp.
729
743
.
14.
Eren
,
T.
, and
Kok
,
M. V.
,
2018
, “
A New Drilling Performance Benchmarking: ROP Indexing Methodology
,”
J. Pet. Sci. Eng.,
163
(
1
), pp.
387
398
.
15.
Soares
,
C.
,
Daigle
,
H.
, and
Gray
,
K.
,
2016
, “
Evaluation of PDC Bit ROP Models and the Effect of Rock Strength on Model Coefficients
,”
J. Nat. Gas Sci. Eng.,
34
(
1
), pp.
1225
1236
.
16.
Elkatatny
,
S.
,
2018
, “
Application of Artificial Intelligence Techniques to Estimate the Static Poisson’s Ratio Based on Wireline Log Data
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072905
.
17.
Paul
,
A.
,
Bhowmik
,
S.
,
Panua
,
R.
, and
Debroy
,
D.
,
2018
, “
Artificial Neural Network-Based Prediction of Performances-Exhaust Emissions of Diesohol Piloted Dual Fuel Diesel Engine Under Varying Compressed Natural Gas Flowrates
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112201
.
18.
Alkamil
,
E. H.
,
Abbas
,
A. K.
,
Flori
,
R.
,
Silva
,
L. E.
,
Wunsch
,
D. C.
, and
Chumkratoke
,
C.
,
2018
, “
Learning From Experience: Real-Time H2S Monitoring System Using Fuzzy ART Unsupervised Learning
,”
IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition
,
Bangkok, Thailand
,
August 27–29
, Paper No. SPE-191097-MS.
19.
Alkamil
,
E. H.
,
Al-Dabooni
,
S.
,
Abbas
,
A. K.
,
Flori
,
R.
, and
Wunsch
,
D. C.
,
2018
, “
Learning From Experience: An Automatic pH Neutralization System Using Hybrid Fuzzy System and Neural Network
,”
Procedia Comput. Sci.,
140
(
1
), pp.
206
215
.
20.
Mantha
,
B.
, and
Samuel
,
R.
,
2016
, “
ROP Optimization Using Artificial Intelligence Techniques With Statistical Regression Coupling
,”
SPE Annual Technical Conference and Exhibition
,
Dubai, UAE
,
September 26–28
, Paper No. SPE-181382-MS.
21.
Abbas
,
A. K.
,
Alameedy
,
U.
,
Alsaba
,
M.
, and
Rushdi
,
S.
,
2018
, “
Wellbore Trajectory Optimization Using Rate of Penetration and Wellbore Stability Analysis
,”
SPE International Heavy Oil Conference and Exhibition
,
Kuwait City, Kuwait
,
December 10–12
, SPE-193755-MS.
22.
Bhowmik
,
S.
,
Panua
,
R.
,
Debroy
,
D.
, and
Paul
,
A.
,
2017
, “
Artificial Neural Network Prediction of Diesel Engine Performance and Emission Fueled With Diesel–Kerosene–Ethanol Blends: A Fuzzy-Based Optimization
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042201
.
23.
Rostami
,
H.
, and
Manshad
,
A. K.
,
2014
, “
A New Support Vector Machine and Artificial Neural Networks for Prediction of Stuck Pipe in Drilling of Oil Fields
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
024502
.
24.
Wang
,
Y.
, and
Salehi
,
S.
,
2015
, “
Application of Real-Time Field Data to Optimize Drilling Hydraulics Using Neural Network Approach
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062903
.
25.
Manshad
,
A. K.
,
Rostami
,
H.
,
Rezaei
,
H.
, and
Hosseini
,
S. M.
,
2015
, “
Application of Artificial Neural Network-Particle Swarm Optimization Algorithm for Prediction of Asphaltene Precipitation During Gas Injection Process and Comparison With Gaussian Process Algorithm
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062904
.
26.
Ma
,
Z.
,
Leung
,
J. Y.
, and
Zanon
,
S.
,
2017
, “
Practical Data Mining and Artificial Neural Network Modeling for Steam-Assisted Gravity Drainage Production Analysis
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032909
.
27.
Li
,
W.
,
Zhao
,
X.
,
Li
,
Y.
,
Ji
,
Y.
,
Peng
,
H.
,
Liu
,
L.
, and
Yang
,
Q.
,
2015
, “
Laboratory Investigations on the Effects of Surfactants on Rate of Penetration in Rotary Diamond Drilling
,”
J. Pet. Sci. Eng.,
134
(
1
), pp.
114
122
.
28.
Zhao
,
X. H.
, and
Gao
,
F.
,
2013
, “
Initial Research on the Effect of Inorganic Salt on Rate of Penetration (ROP) in Drilling Fluids
,”
Pet. Sci. Technol.
,
31
(
4
), pp.
380
387
.
29.
Shi
,
X.
,
Liu
,
G.
,
Gong
,
X.
,
Zhang
,
J.
,
Wang
,
J.
, and
Zhang
,
H.
,
2016
, “
An Efficient Approach for Real-Time Prediction of Rate of Penetration in Offshore Drilling
,”
Math. Probl. Eng.
,
2016
(
3
), pp.
1
13
.
30.
Mohammed
,
H. Q.
,
Abbas
,
A. K.
, and
Dahm
,
H. H.
,
2018
, “
Wellbore Instability Analysis for Nahr Umr Formation in Southern Iraq
,”
52nd US Rock Mechanics/Geomechanics Symposium (ARMA)
,
Seattle, Washington
,
June 17–20
, Paper No. ARMA 18-916.
31.
Gholami
,
R.
,
Aadnoy
,
B.
,
Foon
,
L. Y.
, and
Elochukwu
,
H.
,
2017
, “
A Methodology for Wellbore Stability Analysis in Anisotropic Formations: A Case Study From the Canning Basin, Western Australia
,”
J. Nat. Gas Sci. Eng.,
37
(
1
), pp.
341
360
.
32.
Abbas
,
A. K.
,
Flori
,
R. E.
, and
Alsaba
,
M.
,
2018
, “
Estimating Rock Mechanical Properties of the Zubair Shale Formation Using a Sonic Wireline Log and Core Analysis
,”
J. Nat. Gas Sci. Eng.,
53
(
1
), pp.
359
369
.
33.
Abbas
,
A. K.
,
Flori
,
R. E.
,
Alsaba
,
M.
,
Dahm
,
H.
, and
Alkamil
,
E. H.
,
2018
, “
Integrated Approach Using Core Analysis and Wireline Measurement to Estimate Rock Mechanical Properties of the Zubair Reservoir, Southern Iraq
,”
J. Pet. Sci. Eng.,
166
(
1
), pp.
406
419
.
34.
Ahmed
,
M.
,
Al-Shehri
,
H. A.
,
Haidary
,
S. A.
, and
Povstyanova
,
M.
,
2016
, “
A Comprehensive Geomechanical Study to Understand Drilling Challenges in the Manifa Field Offshore, Saudi Arabia
,”
Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
April 25–28
, Paper No. SPE-182833-MS.
35.
Zhang
,
J.
,
2011
, “
Pore Pressure Prediction From Well Logs: Methods, Modifications, and New Approaches
,”
Earth Sci. Rev.
,
108
(
1–2
), pp.
50
63
.
36.
Eaton
,
B. A.
,
1969
, “
Fracture Gradient Prediction and Its Application in Oilfield Operations
,”
J. Pet. Technol.
,
21
(
10
), pp.
1353
1360
.
37.
Jaeger
,
J. C.
,
Cook
,
N. G.
, and
Zimmerman
,
R. W.
,
2007
,
Fundamentals of Rock Mechanics
,
4th ed.
,
Wiley-Blackwell
,
New York
.
38.
Najibi
,
A. R.
,
Ghafoori
,
M.
,
Lashkaripour
,
G. R.
, and
Asef
,
M. R.
,
2017
, “
Reservoir Geomechanical Modeling: In-Situ Stress, Pore Pressure, and Mud Design
,”
J. Pet. Sci. Eng.,
151
(
1
), pp.
31
39
.
39.
Gholami
,
R.
,
Rabiei
,
M.
,
Aadnoy
,
B.
, and
Rasouli
,
V.
,
2017
, “
A Methodology for Wellbore Stability Analysis of Drilling Into Presalt Formations: A Case Study From Southern Iran
,”
J. Pet. Sci. Eng.,
167
(
1
), pp.
249
261
.
40.
Thiercelin
,
M.
, and
Plumb
,
R.
,
1994
, “
A Core-Based Prediction of Lithologic Stress Contrasts in East Texas Formations
,”
SPE Form. Eval.
,
9
(
4
), pp.
251
258
.
41.
Kidambi
,
T.
, and
Kumar
,
G. S.
,
2016
, “
Mechanical Earth Modeling for a Vertical Well Drilled in a Naturally Fractured Tight Carbonate Gas Reservoir in the Persian Gulf
,”
J. Pet. Sci. Eng.,
141
(
1
), pp.
38
51
.
42.
Abbas
,
A. K.
,
Flori
,
R. E.
, and
Alsaba
,
M.
,
2019
, “
Stability Analysis of Highly Deviated Boreholes to Minimize Drilling Risks and Nonproductive Time
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082905
.
43.
Chandrashekar
,
G.
, and
Sahin
,
F.
,
2014
, “
A Survey on Feature Selection Methods
,”
Comput. Electr. Eng.
,
40
(
1
), pp.
16
28
.
44.
Eskandarian
,
S.
,
Bahrami
,
P.
, and
Kazemi
,
P.
,
2017
, “
A Comprehensive Data Mining Approach to Estimate the Rate of Penetration: Application of Neural Network, Rule Based Models and Feature Ranking
,”
J. Pet. Sci. Eng.,
156
(
1
), pp.
605
615
.
45.
Szlek
,
J.
, and
Mendyk
,
A.
,
2018
, “
Fscaret: Automated Feature Selection From Caret
,” https://cran.rproject.org/web/packages/fscaret/index.html, Accessed November 3, 2018.
46.
Kazemi
,
P.
,
Khalid
,
M. H.
,
Szlek
,
J.
,
Mirtič
,
A.
,
Reynolds
,
G. K.
,
Jachowicz
,
R.
, and
Mendyk
,
A.
,
2016
, “
Computational Intelligence Modeling of Granule Size Distribution for Oscillating Milling
,”
Powder Technol.,
301
(
1
), pp.
1252
1258
.
47.
Arabjamaloei
,
R.
, and
Shadizadeh
,
S.
,
2011
, “
Modeling and Optimizing Rate of Penetration Using Intelligent Systems in an Iranian Southern Oil Field (Ahwaz Oil Field)
,”
Pet. Sci. Technol.
,
29
(
16
), pp.
1637
1648
.
48.
Shadizadeh
,
S. R.
,
Karimi
,
F.
, and
Zoveidavianpoor
,
M.
,
2010
, “
Drilling Stuck Pipe Prediction in Iranian Oil Fields: An Artificial Neural Network Approach
,”
Iran J. Chem. Eng.
,
7
(
4
), pp.
29
41
.
49.
Abbas
,
A. K.
,
Rushdi
,
S.
, and
Alsaba
,
M.
,
2018
, “
Modeling Rate of Penetration for Deviated Wells Using Artificial Neural Network
,”
Abu Dhabi International Petroleum Exhibition and Conference (ADIPEC)
,
Abu Dhabi, UAE
,
Nov. 12–15
, Paper No. SPE-192875-MS.
50.
Aalizad
,
S. A.
, and
Rashidinejad
,
F.
,
2012
, “
Prediction of Penetration Rate of Rotary-Percussive Drilling Using Artificial Neural Networks—A Case Study
,”
Arch. Min. Sci.
,
57
(
3
), pp.
715
728
.
51.
Jahanbakhshi
,
R.
,
Keshavarzi
,
R.
,
Aliyari Shoorehdeli
,
M.
, and
Emamzadeh
,
A.
,
2012
, “
Intelligent Prediction of Differential Pipe Sticking by Support Vector Machine Compared With Conventional Artificial Neural Networks: An Example of Iranian Offshore Oil Fields
,”
SPE Drill. Compl.
,
27
(
4
), pp.
586
595
.
52.
Akande
,
K. O.
,
Owolabi
,
T. O.
, and
Olatunji
,
S. O.
,
2015
, “
Investigating the Effect of Correlation-Based Feature Selection on the Performance of Support Vector Machines in Reservoir Characterization
,”
J. Nat. Gas Sci. Eng.,
22
(
1
), pp.
515
522
.
53.
Abbas
,
A. K.
,
Flori
,
R. E.
, and
Alsaba
,
M.
,
2018
, “
Laboratory Geomechanical Characterization of the Zubair Shale Formation
,”
52nd US Rock Mechanics/Geomechanics Symposium (ARMA)
,
Seattle, WA
,
June 17–20
, Paper No. ARMA 18-78.
54.
Abbas
,
A. K.
,
Dahm
,
H. H.
,
Flori
,
R. E.
, and
Alsaba
,
M.
,
2018
, “
Laboratory Measurements of Petrophysical and Geomechanical Properties for Zubair Sandstone Formation in Southern Iraq
,”
52nd US Rock Mechanics/Geomechanics Symposium (ARMA)
,
Seattle, WA
,
June 17–20
, Paper No. ARMA 18–243.
55.
Soares
,
C.
, and
Gray
,
K.
,
2019
, “
Real-Time Predictive Capabilities of Analytical and Machine Learning Rate of Penetration (ROP) Models
,”
J. Pet. Sci. Eng.,
172
(
1
), pp.
934
959
.
56.
Chen
,
X.
,
Gao
,
D.
,
Guo
,
B.
, and
Feng
,
Y.
,
2016
, “
Real-Time Optimization of Drilling Parameters Based on Mechanical Specific Energy for Rotating Drilling With Positive Displacement Motor in the Hard Formation
,”
J. Nat. Gas Sci. Eng.,
35
(
1
), pp.
686
694
.
You do not currently have access to this content.