Pore–throat size is a key parameter for the assessment of reservoirs. Tight sandstone has the strong heterogeneity in the distribution of pores and throats; consequently, it is very difficult to characterize their distributions. In this study, the existing pore–throat characterization techniques were used jointly with scanning electron microscopy (SEM), low-temperature nitrogen adsorption (LTNA), high-pressure mercury intrusion (HPMI), and rate-controlled mercury intrusion (RCMI) technologies to highlight features of throat sizes and distribution of pores in tight sandstone reservoirs of the Y Basin in China. In addition, full-scale maps (FSMs) were generated. The study results show that key pore types in reservoirs of the Y Basin include residual intergranular pores, dissolved pores, clay mineral pores, and microfractures. LTNA can effectively characterize the distribution of pore–throats with a radius of 2–25 nm. HPMI test results show that tight sandstones contain throats with a radius less than 1000 nm, which are mainly distributed in 25–400 nm and have a unimodal distribution. RCMI tests show that there is no significant difference in pore radius distribution of the tight sandstones, peaking at approximately 100,000–200,000 nm; the throat radius of tight sandstones varies greatly and is less than 1000 nm, in agreement with that of HPMI. Generally, the pore–throat radius distribution of tight sandstones is relatively concentrated. By using the aforementioned techniques, FSM distribution features of pore–throat radius in tight sandstone can be characterized effectively. G6 tight sandstone samples develop pores and throats with a radius of 2–350,000 nm, and the pore–throat types of tight sandstone reservoirs in Y basin are mainly mesopores and macropores.

References

References
1.
Li
,
X. Z.
,
Guo
,
Z. H.
,
Wan
,
Y. J.
,
Liu
,
X. H.
,
Zhang
,
M. L.
,
Xie
,
W. R.
,
Su
,
Y. H.
,
Hu
,
Y.
,
Feng
,
J. W.
,
Yang
,
B. X.
,
Ma
,
S. Y.
, and
Gao
,
S. S.
,
2017
, “
Geological Characteristics and Development Strategies for Cambrian Longwangmiao Formation gas Reservoir in Anyue Gas Field, Sichuan Basin, SW China
,”
Petrol. Explor. Dev.
,
44
(
3
), pp.
398
406
.
2.
Zou
,
C. N.
,
Zhang
,
G. S.
,
Yang
,
Z.
,
Tao
,
S. Z.
,
Hou
,
L. H.
,
Zhu
,
R. K.
,
Yuan
,
X. J.
,
Ran
,
Q. Q.
,
Li
,
D. H.
, and
Wang
,
Z. P.
,
2013
, “
Geological Concepts, Characteristics, Resource Potential and Key Techniques of Unconventional Hydrocarbon: On Unconventional Petroleum Geology
,”
Petrol. Explor. Dev.
,
40
(
4
), pp.
413
428
.
3.
Zhao
,
X. L.
,
Yang
,
Z. M.
,
Lin
,
W.
,
Xiong
,
S. C.
, and
Wei
,
Y. Y.
,
2018
, “
Characteristics of Microscopic Pore-Throat Structure of Tight oil Reservoirs in Sichuan Basin Measured by Rate-Controlled Mercury Injection
,”
Open Phys.
16
(
1
), pp.
675
684
.
4.
Hu
,
S. Y.
,
Zhu
,
R. K.
,
Wu
,
S. T.
,
Bai
,
B.
,
Yang
,
Z.
, and
Cui
,
J. W.
,
2018
, “
Exploration and Development of Continental Tight Oil in China
,”
Petrol. Explor. Dev.
,
45
(
4
), pp.
230
242
.
5.
Zhang
,
S.
,
Xian
,
X.
, and
Zhou
,
J.
,
2018
, “
Experimental Study of the Pore Structure Characterization in Shale With Different Particle Size
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
054502
.
6.
Xie
,
K.
,
Lu
,
X. G.
,
Pan
,
H.
,
Han
,
D. W.
,
Hu
,
G. B.
,
Zhang
,
J.
,
Zhang
,
B. Y.
, and
Cao
,
B.
,
2018
, “
Analysis of Dynamic Imbibition Effect of Surfactant in Microcracks of Reservoir at High Temperature and Low Permeability
,”
SPE Prod. Oper.
,
33
(
3
), pp.
596
606
.
7.
Zhang
,
F.
, and
Yang
,
D.
,
2017
, “
Effects of Non-Darcy Flow and Penetrating Ratio on Performance of Horizontal Wells With Multiple Fractures in a Tight Formation
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032903
.
8.
Jiang
,
Y.
, and
Dahi-Taleghani
,
A.
,
2018
, “
Modified Extended Finite Element Methods for Gas Flow in Fractured Reservoirs: A Pseudo-Pressure Approach
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
073101
.
9.
Wang
,
Z. Y.
,
Yang
,
Z. M.
,
Ding
,
Y. H.
,
He
,
Y.
,
Lin
,
W.
,
Wang
,
W. D.
, and
Sheng
,
G. L.
,
2018
, “
A Multi-Linear Fractal Model for Pressure Transient Analysis of Multiple Fractured Horizontal Wells in Tight Oil Reservoirs Including Imbibition
,”
Fractals
,
27
(
1
), p.
1940004
.
10.
Dokhani
,
V.
,
Yu
,
M.
,
Gao
,
C.
, and
Bloys
,
J.
,
2017
, “
Investigating the Relation Between Sorption Tendency and Hydraulic Properties of Shale Formations
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012902
.
11.
Tan
,
Y. S.
,
Li
,
H. T.
,
Zhou
,
X.
,
Jiang
,
B. B.
,
Wang
,
Y. Q.
, and
Zhang
,
N.
,
2018
, “
A Semi-Analytical Model for Predicting Horizontal Well Performances in Fractured Gas Reservoirs With Bottom-Water and Different Fracture Intensities
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102905
.
12.
Li
,
X. Z.
,
Guo
,
Z. H.
,
Hu
,
Y.
,
Luo
,
R. L.
,
Su
,
Y. H.
,
Sun
,
H. D.
,
Liu
,
X. H.
,
Wan
,
Y. J.
,
Zhang
,
Y. Z.
, and
Li
,
L.
,
2018
, “
Efficient Development Strategies for Large Ultra-Deep Structural Gas Fields in China
,”
Petrol. Explor. Dev.
,
45
(
1
), pp.
111
118
.
13.
Yang
,
Z. M.
,
Ma
,
Z. Z.
,
Luo
,
Y. T.
,
Zhang
,
Y. P.
,
Guo
,
H. K.
, and
Lin
,
W.
,
2018
, “
A Measured Method for In Situ Viscosity of Fluid in Porous Media by Nuclear Magnetic Resonance
,”
Geofluids.
Article ID 9542152.
14.
Zhao
,
X. L.
,
Yang
,
Z. M.
,
Lin
,
W.
,
Xiong
,
S. C.
,
Luo
,
Y. T.
,
Liu
,
X. W.
, and
Xia
,
D. B.
,
2019
, “
Fractal Study on Pore Structure of Tight Sandstone Based on Full-Scale Map
,”
Int. J. Oil Gas Coal T.
15.
Cao
,
W. J.
,
Xie
,
K.
,
Lu
,
X. G.
,
Liu
,
Y. G.
, and
Zhang
,
Y. B.
,
2019
, “
Effect of Profile-Control Oil-Displacement Agent on Increasing Oil Recovery and Its Mechanism
,”
Fuel
,
237
, pp.
1151
1160
.
16.
Zou
,
C. N.
,
Zhu
,
R. K.
,
Wu
,
S. T.
,
Yang
,
Z.
,
Tao
,
S. Z.
,
Yuan
,
X. J.
,
Hou
,
L. H.
,
Yang
,
H.
,
Xu
,
C. C.
,
Li
,
D. H.
,
Bai
,
B.
, and
Wang
,
L.
,
2012
, “
Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accnmulations: Taking Tight Oil and Tight Gas as an Instance
,”
Acta Petrolei. Sinica.
,
33
(
2
), pp.
173
187
[in Chinese].
17.
Lin
,
W.
,
Li
,
X. Z.
,
Yang
,
Z. M.
,
Lin
,
L. J.
,
Xiong
,
S. C.
,
Wang
,
Z. Y.
,
Wang
,
X. Y.
, and
Xiao
,
Q. H.
,
2018
, “
A New Improved Threshold Segmentation Method for Scanning Images of Reservoir Rocks Considering Pore Fractal Characteristics
,”
Fractals
,
26
(
2
), p.
1840003
.
18.
Zou
,
C. N.
,
Zhu
,
R. K.
,
Bai
,
B.
,
Yang
,
Z.
,
Wu
,
S. T.
,
Su
,
L.
,
Dong
,
D. Z.
, and
Li
,
X. J.
,
2011
, “
First Discovery of Nano-Pore Throat in Oil and Gas Reservoir in China and Its Scientific Value
,”
Acta Petrologica. Sinica.
,
27
(
6
), pp.
1857
1864
[in Chinese].
19.
Xiao
,
Q. H.
,
Zhang
,
Y.
,
Yang
,
Z. M.
, and
Guo
,
H. K.
,
2015
, “
Experiment on Low-Temperature Nitrogen Adsorption in Typical Tight Oil Zones in China
,”
Spec. Oil Gas Reservoir.
,
22
(
4
), pp.
82
85
[in Chinese].
20.
Clarkson
,
C. R.
,
Solano
,
N.
,
Bustin
,
R. M.
,
Bustin
,
A. M. M.
,
Chalmers
,
G. R. L.
,
He
,
L.
,
Melnichenko
,
Y. B.
,
Radliński
,
A. P.
, and
Blachd
,
T. P.
,
2013
, “
Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion
,”
Fuel
,
103
, pp.
606
616
.
21.
Yao
,
Y. B.
, and
Liu
,
D. M.
,
2012
, “
Comparison of Low-Field NMR and Mercury Intrusion Porosimetry in Characterizing Pore Size Distributions of Coals
,”
Fuel
,
95
, pp.
152
158
.
22.
Yuan
,
H. H.
, and
Swanson
,
B. F.
,
1989
, “
Resolving Pore-Space Characteristics by Rate-Controlled Porosimetry
,”
SPE Formation Eval.
,
4
(
1
), pp.
17
24
.
23.
Yuan
,
H. H.
,
1991
, “
Pore-Scale Heterogeneity From Mercury Porosimetry Data
,”
SPE Formation Eval.
,
6
(
2
), pp.
233
240
.
24.
Lin
,
W.
,
Li
,
X. Z.
,
Yang
,
Z. M.
,
Wang
,
J.
,
Xiong
,
S. C.
,
Luo
,
Y. T.
, and
Wu
,
G. M.
,
2017
, “
Construction of Dual Pore 3-D Digital Cores With a Hybrid Method Combined With Physical Experiment Method and Numerical Reconstruction Method
,”
Transport Porous Med.
,
120
(
1
), pp.
227
238
.
25.
Zhao
,
H. W.
,
Ning
,
Z. F.
,
Wang
,
Q.
,
Zhang
,
R.
,
Zhao
,
T. Y.
,
Niu
,
T. F.
, and
Zeng
,
Y.
,
2015
, “
Petrophysical Characterization of Tight Oil Reservoirs Using Pressure-Controlled Porosimetry Combined With Rate-Controlled Porosimetry
,”
Fuel
,
154
, pp.
233
242
.
26.
Wu
,
H.
,
Zhang
,
C. L.
,
Ji
,
Y. L.
,
Liu
,
R. E.
,
Wu
,
H.
,
Zhang
,
Y. Z.
,
Geng
,
Z.
,
Zhang
,
Y. L.
, and
Yang
,
J. Q.
,
2018
, “
An Improved Method of Characterizing the Pore Structure in Tight oil Reservoirs: Integrated NMR and Constant-Rate-Controlled Porosimetry Data
,”
J. Petrol. Sci. Eng.
,
166
, pp.
778
796
.
27.
Wang
,
S. Y.
,
Li
,
J. Z.
,
Li
,
D. H.
,
Chen
,
X. M.
, and
Song
,
T.
,
2014
, “
EUR Distribution Analogous Method: Application to Tight Oil Assessment in Jurassic, Sichuan Basin
,”
Nat. Gas Geosci.
,
25
(
11
), pp.
1757
1766
[in Chinese].
28.
Yang
,
Y. M.
,
Yang
,
J. J.
,
Yang
,
G.
,
Tao
,
S. Z.
,
Ni
,
C.
,
Zhang
,
B.
,
He
,
X. D.
,
Lin
,
J. P.
,
Huang
,
D.
,
Liu
,
M.
, and
Zou
,
J.
,
2016
, “
New Research Progress of Jurassic Tight Oil in Central Sichuan Basin
,”
Petrol. Explor. Dev.
,
43
(
6
), pp.
954
964
.
29.
Brunauer
,
S.
,
Deming
,
L. S.
,
Deming
,
W. E.
, and
Teller
,
E.
,
1940
, “
On a Theory of the van der Waals Adsorption of Gases
,”
Am. Chem. Soc.
,
62
(
7
), pp.
1723
1732
.
30.
Sing
,
K. S. W.
,
1985
, “
Reporting Physosorption Data for Gas/Solid Systems With Special Reference to the Determination of Surface Area and Porosity, IUPAC
,”
Pure Appl. Chem.
,
57
(
4
), pp.
603
619
.
31.
Brunauer
,
S.
,
Emmett
,
P. H.
, and
Teller
,
E.
,
1938
, “
Adsorption of Gases in Multimolecular Layers
,”
J. Am. Chem. Soc.
,
60
(
2
), pp.
309
319
.
32.
Yang
,
R. T.
,
2003
,
Adsorbents: Fundamentals and Applications
,
John Wiley & Sons
,
Hoboken, NJ
.
33.
Barrett
,
E. P.
,
Joyner
,
L. G.
, and
Halenda
,
P. P.
,
1951
, “
The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations From Nitrogen Isotherms
,”
J. Am. Chem. Soc.
,
73
(
1
), pp.
373
380
.
34.
Gong
,
Y. J.
,
Liu
,
S. B.
,
Zhu
,
R. K.
,
Liu
,
K. Y.
,
Tang
,
Z. X.
, and
Jiang
,
L.
,
2015
, “
Lower Limit of Tight Oil Flowing Porosity: Application of High-Pressure Mercury Intrusion in the Fourth Member of Cretaceous Quantou Formation in Southern Songliao Basin, NE China
,”
Petrol. Explor. Dev.
,
42
(
5
), pp.
681
688
.
35.
Xi
,
K. L.
,
Cao
,
Y. C.
,
Haile
,
B. G.
,
Zhu
,
R. K.
,
Jahren
,
J.
,
Bjørlykke
,
K.
,
Zhang
,
X. X.
, and
Hellevang
,
H.
,
2016
, “
How Does the Pore-Throat Size Control the Reservoir Quality and Oiliness of Tight Sandstones? The Case of the Lower Cretaceous Quantou Formation in the Southern Songliao Basin, China
,”
Mar. Petrol Geol.
,
76
, pp.
1
15
.
36.
Wang
,
X. X.
,
Hou
,
J. G.
,
Song
,
S. H.
,
Wang
,
D. G.
,
Gong
,
L.
,
Ma
,
K.
,
Liu
,
Y. M.
,
Li
,
Y. Q.
, and
Yan
,
L.
,
2018
, “
Combining Pressure-Controlled Porosimetry and Rate-Controlled Porosimetry to Investigate the Fractal Characteristics of Full-Range Pores in Tight oil Reservoirs
,”
J. Petrol. Sci. Eng.
,
171
, pp.
353
361
.
37.
Yang
,
Z. M.
,
Ma
,
Z. Z.
,
Xiao
,
Q. H.
, and
Guo
,
H. K.
,
2018
, “
Method for All-Scale Pore-Throat Measurements in Tight Reservoir Cores and Its Application
,”
J. Southwest Pet. Univ. (Sci. Technol. Ed.)
,
40
(
3
), pp.
97
104
.
38.
Xiao
,
Q. H.
,
2015
,
Reservoir Evaluation and Seepage Mechanism in Typical Tight Oil Areas
,
University of Chinese Academy of Sciences
,
Beijing
.
39.
Wu
,
H.
,
Zhang
,
C. L.
,
Ji
,
Y. L.
,
Liu
,
R. E.
,
Cao
,
S.
,
Chen
,
S.
,
Zhang
,
Y. Z.
,
Wang
,
Y.
,
Du
,
W.
, and
Liu
,
G.
,
2017
, “
Pore-Throat Size Characterization of Tight Sandstone and Its Control on Reservoir Physical Properties: A Case Study of Yanchang Formation, Eastern Gansu, Ordos Basin
,”
Acta Petrolei. Sinica.
,
38
(
8
), pp.
876
887
[in Chinese].
You do not currently have access to this content.