The combustion in a closed environment was the subject of many works in the past century due to its importance and complex nature compared with the combustion in an open environment. Most research works in this field have investigated different types of gas mixtures, the governing boundary conditions and their effect on the flame propagation structure. Additionally, several investigations have been performed on creating disturbance through obstacles in the flow path as well as the process of deflagration to detonation transition. This paper, for the first time, investigates the effect of porous and solid obstacles on the propagation and the structure of premixed methane–air flame in a closed duct with dimensions of 50 × 11 × 8 cm. The blockage created in the duct by obstacles is in such a way that the detonation process does not occur. The results for the unconstrained duct correctly represent the process of forming the classical tulip flame inside the closed duct. The location of the obstacles is changed in four different distance of 5, 10, 15, and 20 cm from the spark plug, and its effect on combustion characteristics has been evaluated. The results show that the obstacles create fundamental changes in the structure and flame propagation. A significant difference between solid and porous obstacles is that the porous obstacle, in proportion to the solid obstacle, creates less disturbance in the flow field and also does not cause excessive acceleration in the flame propagation. Porous obstacles also reduce the maximum pressure in the chamber during the process, more than the solid obstacles.

References

References
1.
Mallard
,
E.
, and
Le Chatelier
,
H. L.
,
1883
, “
Thermal Model for Flame Propagation
,”
Ann. Mines
,
4
(
18
), pp.
379
.
2.
Askari
,
O.
,
Hannani
,
S. K.
, and
Ebrahimi
,
R.
,
2012
, “
Improvement and Experimental Validation of a Multi-Zone Model for Combustion and NO Emissions in CNG Fueled Spark Ignition Engine
,”
J. Mech. Sci. Technol.
,
26
(
4
), pp.
1205
1212
.
3.
Bychkov
,
V.
,
Akkerman
,
V.
,
Fru
,
G.
,
Petchenko
,
A.
, and
Eriksson
,
L.-E.
,
2007
, “
Flame Acceleration in the Early Stages of Burning in Tubes
,”
Combust. Flame
,
150
(
4
), pp.
263
276
.
4.
Askari
,
O.
,
Metghalchi
,
H.
,
Moghaddas
,
A.
,
Hannani
,
S. K.
,
Ebrahimi
,
R.
,
Kazemzadeh Hannani
,
S.
, and
Hemmati
,
H.
,
2013
, “
Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
.
5.
Askari
,
O.
,
Metghalchi
,
H.
,
Kazemzadeh Hannani
,
S.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022202
.
6.
Shelkin
,
K. I.
,
1940
, “
Influence of Tube Walls on Detonation Ignition
,”
Zh. Eksp. Teor. Fiz.
,
10
(
1
), p.
823
.
7.
Bychkov
,
V.
,
Petchenko
,
A.
,
Akkerman
,
V.
, and
Eriksson
,
L. E.
,
2005
, “
Theory and Modeling of Accelerating Flames in Tubes
,”
Phys. Rev. E
,
72
(
4
), pp.
1
10
.
8.
Akkerman
,
V.
,
Bychkov
,
V.
,
Petchenko
,
A.
, and
Eriksson
,
L. E.
,
2006
, “
Flame Oscillations in Tubes With Nonslip at the Walls
,”
Combust. Flame
,
145
(
4
), pp.
675
687
.
9.
Valiev
,
D.
,
Bychkov
,
V.
,
Akkerman
,
V.
,
Law
,
C. K.
, and
Eriksson
,
L.-E.
,
2012
, “
Flame Acceleration in Channels With Obstacles in the Deflagration-to-Detonation Transition
,”
Combust. Flame
,
157
(
5
), pp.
1012
1021
.
10.
Chen
,
P.
,
Luo
,
G.
,
Sun
,
Y.
, and
Lv
,
Q.
,
2018
, “
Impacts of Plate Slits on Flame Acceleration of Premixed Methane/Air in a Closed Tube
,”
J. Energy Inst.
,
91
(
4
), pp.
563
572
.
11.
Zheng
,
K.
,
Yu
,
M.
,
Zheng
,
L.
,
Wen
,
X.
,
Chu
,
T.
, and
Wang
,
L.
,
2017
, “
Experimental Study on Premixed Flame Propagation of Hydrogen/Methane/Air Deflagration in Closed Ducts
,”
Int. J. Hydrogen Energy
,
42
(
8
), pp.
5426
5438
.
12.
Chen
,
P.
,
Huang
,
F.
, and
Sun
,
Y.
,
2017
, “
Effects of Metal Foam Meshes on Premixed Methane-Air Flame Propagation in the Closed Duct
,”
J. Loss Prev. Process Ind.
,
47
, pp.
22
28
.
13.
Jin
,
K.
,
Duan
,
Q.
,
Liew
,
K. M.
,
Peng
,
Z.
,
Gong
,
L.
, and
Sun
,
J.
,
2017
, “
Experimental Study on a Comparison of Typical Premixed Combustible Gas-Air Flame Propagation in a Horizontal Rectangular Closed Duct
,”
J. Hazard. Mater.
,
327
, pp.
116
126
.
14.
Ponizy
,
B.
,
Claverie
,
A.
, and
Veyssière
,
B.
,
2014
, “
Tulip Flame—The Mechanism of Flame Front Inversion
,”
Combust. Flame
,
161
(
12
), pp.
3051
3062
.
15.
Dunn-Rankin
,
D.
, and
Sawyer
,
R. F.
,
1998
, “
Tulip Flames: Changes in Shape of Premixed Flames Propagating in Closed Tubes
,”
Exp. Fluids
,
24
(
2
), pp.
130
140
.
16.
Akkermann
,
V. B.
,
Bychkov
,
V. V.
,
Bastiaans
,
R. J. M.
,
de Goey
,
L. P. H.
,
van Oijen
,
J. A.
, and
Eriksson
,
L. E.
,
2008
, “
Flow-Flame Interaction in a Closed Chamber
,”
Phys. Fluids
,
20
(
5
), pp.
1
22
.
17.
Matalon
,
M.
, and
Metzener
,
P.
,
1997
, “
The Propagation of Premixed Flames in Closed Tubes
,”
J. Fluid Mech.
,
336
, pp.
331
350
.
18.
Gonzalez
,
M.
,
Borghi
,
R.
, and
Saouab
,
A.
,
1992
, “
Interaction of a Flame Front With Its Self-Generated Flow in an Enclosure: The ‘Tulip Flame’ Phenomenon
,”
Combust. Flame
,
88
(
2
), pp.
201
220
.
19.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2017
, “
Cell Formation Effects on the Burning Speeds and Flame Front Area of Synthetic Gas at High Pressures and Temperatures
,”
Appl. Energy
,
189
, pp.
568
577
.
20.
Zare
,
S.
,
Roy
,
S.
,
El Maadi
,
A.
, and
Askari
,
O.
,
2019
, “
An Investigation on Laminar Burning Speed and Flame Structure of Anisole-Air Mixture
,”
Fuel
,
244
, pp.
120
131
.
21.
Askari
,
O.
,
Wang
,
Z.
,
Vien
,
K.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2017
, “
On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame
,”
Fuel
,
190
, pp.
90
103
.
22.
Matalon
,
M.
,
2009
, “
Flame Dynamics
,”
Proc. Combust. Inst.
,
32 I
(
1
), pp.
57
82
.
23.
Xiao
,
H.
,
Houim
,
R. W.
, and
Oran
,
E. S.
,
2017
, “
Effects of Pressure Waves on the Stability of Flames Propagating in Tubes
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1577
1583
.
24.
Bychkovs
,
V. V.
,
Golberg
,
M.
,
Liberman
,
M. A.
,
Kleev
,
A. I.
, and
Eriksson
,
L.
,
1997
, “
Numerical Simulation of Curved Flames in Cylindrical Tubes
,”
Combust. Sci. Technol.
,
129
(
1
), pp.
217
242
.
25.
Gonzalez
,
M.
,
1996
, “
Acoustic Instability of a Premixed Flame Propagating in a Tube
,”
Combust. Flame
,
107
(
3
), pp.
245
259
.
26.
Matalon
,
M.
, and
McGreevy
,
J. L.
,
1994
, “
The Initial Development of a Tulip Flame
,”
Symp. Combust.
,
25
(
1
), pp.
1407
1413
.
27.
Bychkov
,
V. V.
, and
Liberman
,
M. A.
,
2000
, “
Dynamics and Stability of Premixed Flames
,”
Phys. Rep.
,
325
(
4–5
), pp.
115
237
.
28.
Xiao
,
H.
,
Wang
,
Q.
,
Shen
,
X.
,
Guo
,
S.
, and
Sun
,
J.
,
2013
, “
An Experimental Study of Distorted Tulip Flame Formation in a Closed Duct
,”
Combust. Flame
,
160
(
9
), pp.
1725
1728
.
29.
Clanet
,
C.
, and
Searby
,
G.
,
1996
, “
On the ‘Tulip Flame’ Phenomenon
,”
Combust. Flame
,
105
(
95
), pp.
225
238
.
30.
Xiao
,
H.
,
Makarov
,
D.
,
Sun
,
J.
, and
Molkov
,
V.
,
2012
, “
Experimental and Numerical Investigation of Premixed Flame Propagation With Distorted Tulip Shape in a Closed Duct
,”
Combust. Flame
,
159
(
4
), pp.
1523
1538
.
31.
Dunn-Rankin
,
D.
,
Barr
,
P. K.
, and
Sawyer
,
R. F.
,
1986
, “
Numerical and Experimental Study of ‘Tulip’ Flame Formation in a Closed Vessel
,”
Symp. Int. Combust.
,
21
(
1
), pp.
1291
1301
.
32.
Ellis
,
O. C. de C.
,
1928
, “
Flame Movement in Gaseous Explosive Mixtures
,”
J. Fuel Sci.
7
, pp.
502
508
.
33.
Salamandra
,
G. D.
,
Bazhenova
,
T. V.
, and
Naboko
,
I. M.
,
1958
, “
Formation of Detonation Wave During Combustion of Gas in Combustion Tube
,”
Symp. Combust.
,
7
(
1
), pp.
851
855
.
34.
Starke
,
R.
, and
Roth
,
P.
,
1986
, “
An Experimental Investigation of Flame Behavior During Cylindrical Vessel Explosions
,”
Combust. Flame
,
66
(
3
), pp.
249
259
.
35.
Xiao
,
H.
,
Duan
,
Q.
,
Jiang
,
L.
, and
Sun
,
J.
,
2014
, “
Effects of Ignition Location on Premixed Hydrogen/Air Flame Propagation in a Closed Combustion Tube
,”
Int. J. Hydrogen Energy
,
39
(
16
), pp.
8557
8563
.
36.
Shen
,
X.
,
He
,
X.
, and
Sun
,
J.
,
2015
, “
A Comparative Study on Premixed Hydrogen–Air and Propane–Air Flame Propagations With Tulip Distortion in a Closed Duct
,”
Fuel
,
161
, pp.
248
253
.
37.
Rokni
,
E.
,
Moghaddas
,
A.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2015
, “
Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012204
.
38.
Askari
,
O.
,
Moghaddas
,
A.
,
Alholm
,
A.
,
Vein
,
K.
,
Alhazmi
,
B.
, and
Metghalchi
,
H.
,
2016
, “
Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/Air Mixtures at High Temperatures and Pressures Using a Novel Multi-Shell Model
,”
Combust. Flames
,
168
, pp.
20
31
.
39.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2017
, “
Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012204
.
40.
Wen
,
X.
,
Yu
,
M.
,
Liu
,
Z.
,
Li
,
G.
,
Ji
,
W.
, and
Xie
,
M.
,
2013
, “
Effects of Cross-Wise Obstacle Position on Methane–Air Deflagration Characteristics
,”
J. Loss Prev. Process Ind.
,
26
(
6
), pp.
1335
1340
.
41.
Chen
,
P.
,
Li
,
Y.
,
Guo
,
S.
, and
Ji
,
J.
,
2016
, “
Experimental and Numerical Study of Premixed Methane/Air Flame Propagating in Various L/D Closed Ducts
,”
Process Saf. Prog.
,
35
(
2
), pp.
185
191
.
42.
Chen
,
P.
,
Guo
,
S.
,
Li
,
Y.
, and
Zhang
,
Y.
,
2017
, “
Experimental and LES Investigation of Premixed Methane/Air Flame Propagating in a Tube With a Thin Obstacle
,”
Combust. Theory Model.
,
21
(
2
), pp.
274
292
.
43.
Wang
,
Q.
,
Liu
,
S.
,
Shu
,
C.
,
Ding
,
Y.
, and
Li
,
Z.
,
2017
, “
Influence of Different Types of Obstacles on the Propagation of Premixed Methane-Air Flames in a Half-Open Tube
,”
Energies
,
10
(
11
), p.
1908
.
44.
Chen
,
P.
,
Sun
,
Y.
,
Li
,
Y.
, and
Luo
,
G.
,
2017
, “
Experimental and LES Investigation of Premixed Methane/Air Flame Propagating in an Obstructed Chamber With Two Slits
,”
J. Loss Prev. Process Ind.
,
49
, pp.
711
721
.
45.
Askari
,
O.
,
Vien
,
K.
,
Wang
,
Z.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/Air Flames at High Pressures and Temperatures
,”
Appl. Energy
,
179
, pp.
451
462
.
46.
Wang
,
J.
,
Huang
,
Z.
,
Tang
,
C.
,
Miao
,
H.
, and
Wang
,
X.
,
2009
, “
Numerical Study of the Effect of Hydrogen Addition on Methane-Air Mixtures Combustion
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
1084
1096
.
47.
Xiao
,
H.
,
Wang
,
Q.
,
He
,
X.
,
Sun
,
J.
, and
Shen
,
X.
,
2011
, “
Experimental Study on the Behaviors and Shape Changes of Premixed Hydrogen-Air Flames Propagating in Horizontal Duct
,”
Int. J. Hydrogen Energy
,
36
(
10
), pp.
6325
6336
.
You do not currently have access to this content.