Ozone-assisted combustion has shown promise in stabilizing combustion and extending operating range of internal combustion engines. However, it has been reported that sensitivity of ozone quantity on combustion varies significantly depending on combustion modes. For example, autoignition-driven combustion in homogeneous charge compression ignition (HCCI) engine was found to be highly sensitive to the ozone concentration, and up to 100 ppm was found to be sufficient to promote combustion. On the other hand, flame propagation in spark-ignition (SI) engine has been reported to be much less sensitive to the ozone amount, requiring ozone concentration about 3000 ∼ 6000 ppm to realize any benefit in the flame speed. A better understanding of the ozone sensitivity is required for combustion device design with ozone addition. In this study, a Damköhler number analysis was performed to analyze the vast difference in the ozone sensitivity between autoignition and flame propagation. The analysis showed that, for ozone to be effective in flame propagation, the contribution of ozone on chemistry should be large enough to overcome the diffused radical from the oxidation layer. It is expected that similar analysis will be applicable to any additives to provide an understanding of their effect.

References

References
1.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
See
,
Y. C.
, and
Le Moine
,
A.
,
2018
, “
Multidimensional Numerical Simulations of Knocking Combustion in a Cooperative Fuel Research Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102205
.
2.
Yue
,
Z.
,
Edwards
,
D.
,
Sluders
,
C. S.
, and
Som
,
S.
,
2019
, “
Prediction of Cyclic Variability and Knock-Limited Spark Advance in a Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102201
.
3.
Hailin
,
L.
,
Neill
,
W. S.
, and
Chippior
,
W. L.
,
2011
, “
An Experimental Investigation of HCCI Combustion Stability Using n-Heptane
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022204
.
4.
Fang
,
W.
,
Fang
,
J.
,
Kittelson
,
D. B.
, and
Northrop
,
W. F.
,
2014
, “
An Experimental Investigation of Reactivity-Controlled Compression Ignition Combustion in a Single-Cylinder Diesel Engine Using Hydrous Ethanol
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
031101
.
5.
Kavuri
,
C.
, and
Kokjohn
,
S. L.
,
2018
, “
Computational Study to Identify Feasible Operating Space for a Mixed Mode Combustion Strategy—A Pathway for Premixed Compression Ignition High Load Operation
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082201
.
6.
Singh
,
A. P.
,
Bajpai
,
N.
, and
Agarwal
,
A. K.
,
2018
, “
Combustion Mode Switching Characteristics of a Medium-Duty Engine Operated in Compression Ignition/PCCI Combustion Modes
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092201
.
7.
McAllister
,
D. M.
,
1985
, “
An Ionizer for Internal Combustion Engines
,” US Patent 4519357.
8.
Lee
,
J. L.
,
1991
, “
Air Ionization System for Internal Combustion Engines
,” US Patent 5010869.
9.
Yamada
,
H.
,
Yoshii
,
M.
, and
Tezaki
,
A.
,
2005
, “
Chemical Mechanistic Analysis of Additive Effects in Homogeneous Charge Compression Ignition of Dimethyl Ether
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2773
2780
.
10.
Foucher
,
F.
,
Higelin
,
P.
,
Mounaim-Rousselle
,
C.
, and
Dagaut
,
P.
,
2013
, “
Influence of Ozone on the Combustion of n-Heptane in a HCCI Engine
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3005
3012
.
11.
Masurier
,
J.-B.
,
Foucher
,
F.
,
Dayma
,
G.
, and
Dagaut
,
P.
,
2014
, “
SAE
,”
SAE World Congress
,
Detroit
.
12.
Pinazzi
,
P. M.
,
Masurier
,
J.-B.
,
Dayma
,
G.
,
Dagaut
,
P.
, and
Foucher
,
F.
,
2015
, “
Effect of Additives on Combustion Characteristics of a Natural Gas Fueled HCCI Engine
,”
SAE
Technical Paper Series 2015-24-2450.
13.
Mohammadi
,
A.
,
Kawanabe
,
H.
,
Ishiyama
,
T.
, and
Shioji
,
M.
,
2006
, “
Study on Combustion Control in Natural-Gas PCCI Engines With Ozone Addition Into Intake Gas
,”
SAE
Technical Paper Series 2006-01-0419.
14.
Schonborn
,
A.
,
Hellier
,
P.
,
Aliev
,
A. E.
, and
Ladommatos
,
N.
,
2010
, “
Ignition Control of HCCI Combustion Through Adaptation of the Fuel Molecular Structure by Reaction With Ozone
,”
Fuel
,
89
(
11
), pp.
3178
3184
.
15.
Suess
,
M.
,
Guenthner
,
M.
,
Schenk
,
M.
, and
Rottengruber
,
H.-S.
,
2011
, “
Investigation of the Potential of Corona Ignition to Control Gasoline HCCI
,”
Proc. Inst. Mech. Eng. D
,
226
(
2
), pp.
275
286
.
16.
Kadono
,
T.
,
Yoshida
,
K.
, and
Shoji
,
H.
,
2002
, “
The Combustion Phenomena Under Corona Discharge Application
,”
SAE
Technical Paper Series 2002-32-1823.
17.
Shiraishi
,
T.
,
Urushihara
,
T.
, and
Gundersen
,
M.
,
2009
, “
A Trial of Ignition Innovation of Gasoline Engine by Nanosecond Pulsed Low Temperature Plasma Ignition
,”
J. Phys. D: Appl. Phys.
,
42
(
13
), pp.
135208
.
18.
Shiraishi
,
T.
, and
Urushihara
,
T.
,
2011
, “
Fundamental Analysis of Combustion Initiation Characteristics of Low Temperature Plasma Ignition for Internal Combustion Gasoline Engine
,”
SAE
Technical Paper Series 2011-01-0660.
19.
Kosarev
,
I. N.
,
Aleksandrov
,
N. L.
,
Kindysheva
,
S. V.
,
Starikovskaia
,
S. M.
, and
Starikovskii
,
A. Y.
,
2008
, “
Kinetic Mechanism of Plasma-Assisted Ignition of Hydrocarbons
,”
J. Phys. D: Appl. Phys.
,
41
(
3
), pp.
032002
.
20.
Ombrello
,
T.
,
Won
,
S. H.
,
Ju
,
Y.
, and
Williams
,
S.
,
2010
, “
Flame Propagation Enhancement by Plasma Excitation of Oxygen. Part I: Effects of O3
,”
Combust. Flame
,
157
(
10
), pp.
1906
1915
.
21.
Ombrello
,
T.
,
Won
,
S. H.
,
Ju
,
Y.
, and
Williams
,
S.
,
2010
, “
Flame Propagation Enhancement by Plasma Excitation of Oxygen. Part II: Effects of Oxygen Atom
,”
Combust. Flame
,
157
(
10
), pp.
1916
1928
.
22.
Gao
,
X.
,
Zhang
,
Y.
,
Adusumilli
,
S.
,
Seitzman
,
J.
,
Sun
,
W.
,
Ombrello
,
T.
, and
Carter
,
C.
,
2015
, “
The Effect of Ozone Addition on Laminar Flame Speed
,”
Combust. Flame
,
162
(
3
), pp.
3914
3924
.
23.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2002
, “
A Comprehensive Modeling Study of Iso-Octane Oxidation, Combustion and Flame
,”
Combust. Flame
,
129
(
3
), pp.
253
280
.
24.
Keum
,
S.
,
Idicheria
,
C. A.
,
Najt
,
P. M.
, and
Kuo
,
T.-W.
,
2017
, “
A Skeletal Iso-Octane Reaction Mechanism for Low Temperature Plasma Ignition With Ozone Surrogate
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
4129
4136
.
25.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge Press
,
Cambridge
.
You do not currently have access to this content.